Alkali metals have been widely employed as catalyst promoters; however, the promoting mechanism remains essentially unclear. Li, when in the imide form, is shown to synergize with 3d transition metals or their nitrides TM(N) spreading from Ti to Cu, leading to universal and unprecedentedly high catalytic activities in NH3 decomposition, among which Li2NH-MnN has an activity superior to that of the highly active Ru/carbon nanotube catalyst. The catalysis is fulfilled via the two-step cycle comprising: 1) the reaction of Li2NH and 3d TM(N) to form ternary nitride of LiTMN and H2, and 2) the ammoniation of LiTMN to Li2NH, TM(N) and N2 resulting in the neat reaction of 2 NH3⇌N2+3 H2. Li2NH, as an NH3 transmitting agent, favors the formation of higher N-content intermediate (LiTMN), where Li executes inductive effect to stabilize the TM-N bonding and thus alters the reaction energetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.