This paper introduces the SemEval-2021 shared task 4: Reading Comprehension of Abstract Meaning (ReCAM). This shared task is designed to help evaluate the ability of machines in representing and understanding abstract concepts. Given a passage and the corresponding question, a participating system is expected to choose the correct answer from five candidates of abstract concepts in a cloze-style machine reading comprehension setup.Based on two typical definitions of abstractness, i.e., the imperceptibility and nonspecificity, our task provides three subtasks to evaluate the participating models. Specifically, Subtask 1 aims to evaluate how well a system can model concepts that cannot be directly perceived in the physical world. Subtask 2 focuses on models' ability in comprehending nonspecific concepts located high in a hypernym hierarchy given the context of a passage. Subtask 3 aims to provide some insights into models' generalizability over the two types of abstractness. During the SemEval-2021 official evaluation period, we received 23 submissions to Subtask 1 and 28 to Subtask 2. The participating teams additionally made 29 submissions to Subtask 3.
In this paper, we utilize distributed word representations (i.e., word embeddings) to analyse the representation of semantics in brain activity. The brain activity data were recorded using functional magnetic resonance imaging (fMRI) when subjects were viewing words. First, we analysed the functional selectivity of different cortex areas by calculating the correlations between neural responses and several types of word representations, including skipgram word embeddings, visual semantic vectors, and primary visual features. The results demonstrated consistency with existing neuroscientific knowledge. Second, we utilized behavioural data as the semantic ground truth to measure their relevance with brain activity. A method to estimate word embeddings under the constraints of brain activity similarities is further proposed based on the semantic word embedding (SWE) model. The experimental results show that the brain activity data are significantly correlated with the behavioural data of human judgements on semantic similarity. The correlations between the estimated word embeddings and the semantic ground truth can be effectively improved after integrating the brain activity data for learning, which implies that semantic patterns in neural representations may exist that have not been fully captured by state-of-the-art word embeddings derived from text corpora.
This paper proposes a new model, called condition-transforming variational autoencoder (CTVAE), to improve the performance of conversation response generation using conditional variational autoencoders (CVAEs). In conventional CVAEs , the prior distribution of latent variable z follows a multivariate Gaussian distribution with mean and variance modulated by the input conditions. Previous work found that this distribution tends to become conditionindependent in practical application. In our proposed CTVAE model, the latent variable z is sampled by performing a non-linear transformation on the combination of the input conditions and the samples from a condition-independent prior distribution N (0, I). In our objective evaluations, the CTVAE model outperforms the CVAE model on fluency metrics and surpasses a sequence-to-sequence (Seq2Seq) model on diversity metrics. In subjective preference tests, our proposed CTVAE model performs significantly better than CVAE and Seq2Seq models on generating fluency, informative and topic relevant responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.