Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary artery (PA) remodeling. T helper 2 cell (Th2) immune response is involved in PA remodeling during PAH progression. Here, we found that CRTH2 (chemoattractant receptor homologous molecule expressed on Th2 cell) expression was up-regulated in circulating CD3CD4 T cells in patients with idiopathic PAH and in rodent PAH models. CRTH2 disruption dramatically ameliorated PA remodeling and pulmonary hypertension in different PAH mouse models. CRTH2 deficiency suppressed Th2 activation, including IL-4 and IL-13 secretion. Both CRTH2 bone marrow reconstitution and CRTH2 CD4 T cell adoptive transfer deteriorated hypoxia + ovalbumininduced PAH in CRTH2 mice, which was reversed by dual neutralization of IL-4 and IL-13. CRTH2 inhibition alleviated established PAH in mice by repressing Th2 activity. In culture, CRTH2 activation in Th2 cells promoted pulmonary arterial smooth muscle cell proliferation through activation of STAT6. These results demonstrate the critical role of CRTH2-mediated Th2 response in PAH pathogenesis and highlight the CRTH2 receptor as a potential therapeutic target for PAH.
Pathological mechanisms of pulmonary arterial hypertension (PAH) remain largely unexplored. Effective treatment of PAH remains a challenge. The aim of this study was to discover the underlying mechanism of PAH through functional metabolomics and to help develop new strategies for prevention and treatment of PAH.Metabolomic profiling of plasma in patients with idiopathic PAH was evaluated through HPLC-MS, with spermine identified to be the most significant and validated in another independent cohort. The roles of spermine and spermine synthase (SMS) were examined in pulmonary arterial smooth muscle cells (PASMCs) and rodent models of pulmonary hypertension.Using targeted metabolomics, plasma spermine levels were found to be higher in patients with idiopathic PAH compared to healthy controls. Spermine administration promoted proliferation and migration of PASMCs and exacerbated vascular remodelling in rodent models of pulmonary hypertension. The spermine-mediated deteriorative effect can be attributed to a corresponding upregulation of its synthase (SMS) in the pathological process. Inhibition of SMS in vitro suppressed platelet-derived growth factor-BB–mediated proliferation of PASMCs, and in vivo attenuated monocrotaline-mediated pulmonary hypertension in rats.Plasma spermine promotes pulmonary vascular remodelling. Inhibiting spermine synthesis could be a therapeutic strategy for PAH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.