As it is tough for the current energy absorb devices of urban vehicles to meet the crashworthiness requirements in the collision scenario of 25km/h, a methodology to improve the general crashworthiness is presented. A multi-criteria optimization, with the deformations and accelerations of all cars as the design functions and the force characteristics of end structures of cars as design variables, is defined and the Pareto Fonts are obtained. Then defining energy absorbed as design function, a single criteria optimization is made and the specific goal is achieved. No explicit relationship could be found between the design variables and the design functions, so a crash model of a train with velocity of 25km/h colliding to another train stopped is built and the genetic algorithm is chosen to solve the optimization problems. The results indicate that the crashworthiness performance of the trains is significantly improved and the crashworthiness requirements could be reached finally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.