To improve the characteristics of a tractor power transmission system, make the transmission system not only meet the geometric principle but also meet the working speed requirements of the tractor, realize the continuous adjustment of the speed ratio, and solve the power interruption caused by the change of speed ratio. This paper not only proposes a new type of five-stage hydraulic mechanical continuously variable transmission (HMCVT), but also proposes a geometric design method based on I-GA. In this paper, the intersection position of each working section is introduced in the optimization design process, and six wet clutches, one brake and two planetary rows are used to achieve a flexible geometric design. The results show that the HMCVT proposed in this paper can effectively match the required speed of the tractor. After optimization, the transmission ratio characteristics are consistent with the target characteristics (the average error is about 3.27% and the common ratio is about 1.81); the simulation results based on Simulation X are highly consistent with the theoretical design values (the MAPE of 36 simulation experiments is about 0.72%); and the maximum speed of the tractor is 41.62 km/h. The proposed HMCVT design scheme and optimization design method provide a direct basis for the research and development of the composite power transmission system of tractors or other vehicles and agricultural machinery.
The unreasonable shift point will cause a large shift impact, which will affect the engine fuel economy and the service life of the wet clutch. To decrease shift impact on agricultural tractors with HMCVT (Hydromechanical Continuously Variable Transmission) and find the best working point, the following methods are proposed in this paper: firstly, conducting all-factor method and response surface method (RSM) to design and carry out bench test of shift impact; secondly, using the basic linear fitting, RSM, and stepwise regression analysis to establish comprehensive mathematical models and selecting models with high prediction accuracy; thirdly, putting forward the method of determining the weight of variance to match parameters of three quality evaluation indexes with inconsistent correlation; finally, establishing the total shift quality evaluation index and obtaining the optimal shift working point. It is found that oil filling pressure has a significant effect on speed drop, while the engine speed has a significance on the dynamic load and sliding friction. To make the transmission section of the best quality, the oil pressure at this time is 1 MPa and the engine speed is 1040 r/min. The results show that the proposed method can determine the optimal shift point and provide a reference for developing the control strategy.
Hydromechanical continuously variable transmission (HMCVT) is capable of bearing large torque and has wide transmission range, which is suitable for high-power tractors. Dynamic characteristics could influence the tractor life, especially in a high-power tractor. Wet clutch is the crucial component in the HMCVT, which could smooth and soft power transmission. Therefore, it is important to study the dynamic characteristics and implement the wet clutch test of HMCVT. In this paper, AMESim is used to establish virtual models of gearbox, pump-controlled hydraulic motor system, and shifting hydraulic system. Then, a simulation study of tractor operation under working condition is carried out. The internal and external meshing forces of the planetary row are analyzed. Finally, the wet clutch engagement process of HMCVT in the high-power tractor is tested to verify the oil pressure. The simulation results show that the values of internal and external meshing force become larger as the throttle opening increases. At the moment of shifting change, the meshing forces of the planetary gear have great impact. The clutch test shows that the trend of the oil filling curve obtained from the bench test is similar to that obtained from the theoretical curve, which verifies the simulation results.
In order to improve the working quality of wet clutch switching in an agricultural tractor, in this paper, we took a power shift system composed of multiple wet clutches as the research object for full-factorial performance measurement, multi-factor analysis of the degree of influence, establishment of a single evaluation index model, formation of a comprehensive evaluation index, and formulation of adjustable factor control strategies. We studied the simulation test platform of an agricultural tractor power transmission system based on the SimulationX software and obtained 225 sets of sample data under a full-use condition. Partial least squares and range analysis were applied to comprehensively analyze the influence of multiple factors on the working quality of wet clutches. In this paper, we proposed a modeling method for a single evaluation index of the wet clutch (combined with polynomial regression and tentative method, the goal is determined in the form of a model with the maximum coefficient of determination) and two control strategy optimization methods for the wet clutch adjustable factors, i.e., Method 1 (integrated optimization) and Method 2 (step-by-step optimization), both methods were based on an improved genetic algorithm. The results showed that oil pressure, flow rate, and load had significant effects on the dynamic load characteristics (the degrees were 0.38, −0.44, and −0.63, respectively, with a negative sign representing an inverse correlation); rate of flow and load had significant effects on speed drop characteristics (the degrees were −0.56 and 0.73, respectively). A multivariate first-order linear model accurately described the dynamic load characteristics (R2 = 0.9371). The accuracy of the dynamic load characteristic model was improved by 5.5037% after adding the second-order term and interaction term of oil pressure. The polynomial model containing the first-order oil pressure, first-order flow rate, second-order flow rate, and interaction terms could explain the speed drop characteristics, with an R2 of 0.9927. If agricultural tractors operate under medium and large loads, the oil pressure and flow rate in their definitional domains should be small and large values, respectively; if operating under small loads, both oil pressure and flow rate should be high. When the wet clutch dynamic load and speed drop characteristics were improved, the sliding friction energy loss also decreased synchronously (the reduction could reach 70.19%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.