Aptamer–drug conjugates (ApDCs) are potential targeted pharmaceutics, but their clinical applications are hampered by fast clearance in blood. Herein we report the construction of ApDCs modified with artificial base F and the study of biological activities. Two types of F-base-modified ApDCs were prepared, Sgc8-paclitaxel by conjugation and Sgc8-gemcitabine, by automated solid-phase synthesis. In vitro experiments showed that F-base-modified ApDCs retain the specificity of the aptamer to target cells and the biological stability is improved. In vivo studies demonstrated that the circulatory time is increased by up to 55 h or longer, as the incorporated F base leads to a stable ApDC-albumin complex as the formulation for targeted delivery. Moreover, conjugated drug molecules were released efficiently and the drug (paclitaxel) concentration in the tumor site was improved. The results demonstrate that an F-base-directed ApDC-albumin complex is a potential platform for drug delivery and targeted cancer therapy.
Traditional Chinese Medicine (TCM) provides unique therapeutic effects for many diseases with identified efficacy during long practice. Astragalus Membranaceus (AM) is the Chinese herbal applied for kidney injury in the clinic, but it remains challenging to further enhance the efficacy. Cycloastragenol (CAG) is the ingredient isolated from AM with poor water solubility, which has shown a renoprotective effect. Herein we designed and synthesized the corresponding solid-phase module of CAG, from which CAG as a pharmaceutical element was incorporated into oligonucleotides (ON) as an ON-CAG conjugate in a programmable way by a DNA synthesizer. Cell viability study demonstrated that ON-CAG conjugate remains similar renoprotective effect as that of CAG, which efficiently recovers the activity of HK-2 cells pretreated with cisplatin. Similarly, in the renal cells treated with the conjugate, the biomarkers of kidney injury such as KIM-1 and IL-18 are downregulated, and cytokines are reduced as treated with anti-inflammatory agents. Overall, we have managed to incorporate a hydrophobic ingredient of TCM into ON and demonstrate the oligonucleotide synthesis technology as a unique approach for the mechanism study of TCM, which may facilitate the discovery of new therapeutics based on TCM.
Radioiodination of oligonucleotides provides an extra modality for nucleic acid-based theranostics with potential applications. Herein, we report the design and synthesis of a phosphoramidite embedded with a phenolic moiety and demonstrate that oligonucleotides can be readily functionalized with phenol as a precursor by general DNA synthesis. It was identified that the introduction of the precursor does not block the specificity of an aptamer, and the radioiodination is applicable to both DNA and RNA oligonucleotides in a site-specific approach with a commercial kit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.