In a tactical wireless communication environment, it is common for device-to-device communication to occur without a base station, but this can be problematic when the distance between the source and destination is too far. Relays are often used to improve transmission distance and reliability, but amplification-based relaying can result in lower communication performance compared to other methods. This paper proposes a method for obtaining diversity gain through the application of time delay during relaying. The proposed method is compared to a conventional method that uses phase rotation to obtain diversity gain. Simulation results show that the proposed method has slightly lower or similar performance improvement compared to the conventional relay method.
This paper introduces an amplify-and-forward (AF) relaying technique that employs phase dithering and intentional delay within single carrier-frequency domain equalizer (SC-FDE) systems. The proposed relaying technique aims to increase the gain of both frequency diversity and time diversity in slow fading channels. To achieve this, the proposed technique introduces random phase rotation and random intentional delay. The relaying scenario assumes two-hop communication with relaying between the source and destination. It is assumed that many nodes are densely distributed, allowing for many relay nodes to participate in relaying. To verify the performance through computer simulation, the number of relays is 1, 2, 3, 5, 15, and 25, and three modulation coding schemes (MCSs) are considered: QPSK with R=1/3, 16QAM with R=3/4, and 8PSK with R=7/8. The simulation results demonstrate that the proposed relaying technique improves the bit error ratio (BER) performance. The performance improves as the number of relays increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.