Mesenchymal stem cells-derived exosomes (MSCs-exosomes) reportedly possess cardioprotective effects. This study investigated the therapeutic potential and mechanisms of MSCs-exosomes on heart failure (HF). H9c2 cells were used to establish a cardiomyocyte hypertrophy model by angiotensin II (Ang II) treatment. Isolated MSCsexosomes were identified by transmission electron microscope and CD63 detection. Apoptosis rate was measured by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay. Levels of inflammatory factors [interleukin (IL)-1β, IL-4, IL-6, and tumor necrosis factor (TNF)-α] and brain natriuretic peptide (BNP) were determined by ELISA. Expression of apoptosis-related proteins [Bax, B-cell lymphoma-2 (Bcl-2), and caspase 3] and Hippo-Yes-associated protein (YAP) pathway-related proteins [YAP, phosphor (p)-YAP, and tafazzin (TAZ)] was detected by western blotting. Cardiomyocyte hypertrophy of H9c2 cells induced by Ang II was ameliorated by MSCsexosomes treatment. MSCs-exosomes downregulated Bax and caspase 3 levels and upregulated Bcl-2 level in Ang II-induced H9c2 cells. MSCs-exosomes also reduced the levels of BNP, IL-1β, IL-4, IL-6, and TNF-α in Ang II-induced H9c2 cells. Meanwhile, p-YAP was downregulated and TAZ was upregulated after MSCs-exosomes administration. In conclusion, MSCs-exosomes alleviate the apoptosis and inflammatory response of cardiomyocyte via deactivating Hippo-YAP pathway in HF.
Heart failure (HF) is a major global cause of morbidity and mortality. This study aimed to elucidate the role of secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2) in HF development and its underlying mechanism. Using a rat HF model, SMOC2 expression was examined and then knocked down via transfection to assess its impact on cardiac function and damage. The study also evaluated the effects of SMOC2 knockdown on autophagy-related molecules and the transforming growth factor beta 1 (TGF-β1)/SMAD family member 3 (Smad3) signaling pathway. Intraperitoneal injection of the TGF-β agonist (SRI-011381) into the HF rat model was performed to explore the SMOC2-TGF-β1/Smad3 pathway relationship. SMOC2 expression was elevated in HF rats, while its downregulation improved cardiac function and damage. SMOC2 knockdown reversed alterations in the LC3-II/I ratio, Beclin-1, and p62 levels in HF rats. Through transmission electron microscope, we observed that SMOC2 knockdown restored autophagosome levels. Furthermore, SMOC2 downregulation inhibited the TGF-β1/Smad3 signaling pathway, which was counteracted by SRI-011381. In conclusion, SMOC2 knockdown inhibits HF development by modulating TGF-β1/Smad3 signaling-mediated autophagy, suggesting its potential as a therapeutic target for HF.
Objective Stem cell therapy is a promising approach for diabetes via promoting the differentiation of insulin-producing cells (IPCs). This study aimed to screen the differentially expressed miRNAs (DEmiRNAs) during the differentiation of muscle-derived stem cells (MDSCs) into IPCs, and uncover the underlying function and mechanism of a specific DEmiRNA, miR-708-5p. Methods MDSCs were successfully isolated from the leg muscle of rats, and were induced for IPCs differentiation through a five-stage protocol. miRNA microarray assay was performed for screening DEmiRNAs during differentiation. The features of MDSCs-derived IPCs were identified by qRT-PCR, flow cytometry, and immunofluorescence staining. The targeting of STK4 by miR-708-5p was examined by luciferase assay. The protein expression of STK4, YAP1, and p-YAP1 was determined by Western blot and immunofluorescence staining. Results MDSCs were successfully isolated and differentiated into IPCs. A total of 12 common DEmiRNAs were obtained during five-stage differentiation. Among them, miR-708-5p that highly expressed in MDSCs-derived IPCs was selected. Overexpression of miR-708-5p upregulated some key transcription factors (Pdx1, Ngn3, Nkx2.2, Nkx6.1, Gata4, Gata6, Pax4, and Pax6) involving in IPCs differentiation, and increased insulin positive cells. In addition, STK4 was identified as the target gene of miR-708-5p. miR-708-5p overexpression downregulated the expression of STK4 and the downstream phosphorylated YAP1. Conclusions There were 12 DEmiRNAs involved in the differentiation of MDSCs into IPCs. miR-708-5p promoted MDSCs differentiation into IPCs probably by targeting STK4-mediated Hippo-YAP1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.