Viral proteases are essential for pathogenesis and virulence of severe acute respiratory syndrome coronavirus (SARS-CoV). Little information is available on SARS-CoV papain-like protease 2 (PLP2), and development of inhibitors against PLP2 is attractive for antiviral therapy. Here, we report the characterization of SARS-CoV PLP2 (from residues 1414 to 1858) purified from baculovirus-infected insect cells. We demonstrate that SARS-CoV PLP2 by itself differentially cleaves between the amino acids Gly180 and Ala181, Gly818 and Ala819, and Gly2740 and Lys2741 of the viral polypeptide pp1a, as determined by reversed-phase high-performance liquid chromatography analysis coupled with mass spectrometry. This protease is especially selective for the P1, P4, and P6 sites of the substrate. The study demonstrates, for the first time among coronaviral PLPs, that the reaction mechanism of SARS-CoV PLP2 is characteristic of papain and compatible with the involvement of the catalytic dyad (Cys)-S(-)/(His)-Im(+)H ion pair. With a fluorogenic inhibitor-screening platform, we show that zinc ion and its conjugates potently inhibit the enzymatic activity of SARS-CoV PLP2. In addition, we provided evidence for evolutionary reclassification of SARS-CoV. The results provide important insights into the biochemical properties of the coronaviral PLP family and a promising therapeutic way to fight SARS-CoV.
DPP-IV is a prolyl dipeptidase, cleaving the peptide bond after the penultimate proline residue. It is an important drug target for the treatment of type II diabetes. DPP-IV is active as a dimer, and monomeric DPP-IV has been speculated to be inactive. In this study, we have identified the C-terminal loop of DPP-IV, highly conserved among prolyl dipeptidases, as essential for dimer formation and optimal catalysis. The conserved residue His 750 on the loop contributes significantly for dimer stability. We have determined the quaternary structures of the wild type, H750A, and H750E mutant enzymes by several independent methods including chemical crosslinking, gel electrophoresis, size exclusion chromatography, and analytical ultracentrifugation. Wild-type DPP-IV exists as dimers both in the intact cell and in vitro after purification from human semen or insect cells. The H750A mutation results in a mixture of DPP-IV dimer and monomer. H750A dimer has the same kinetic constants as those of the wild type, whereas the H750A monomer has a 60-fold decrease in k cat . Replacement of His 750 with a negatively charged Glu (H750E) results in nearly exclusive monomers with a 300-fold decrease in catalytic activity. Interestingly, there is no dynamic equilibrium between the dimer and the monomer for all forms of DPP-IVs studied here. This is the first study of the function of the C-terminal loop as well as monomeric mutant DPP-IVs with respect to their enzymatic activities. The study has important implications for the discovery of drugs targeted to the dimer interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.