Silicon nanowire field-effect transistor (SiNW FET) devices have been interfaced with cells; however, their application for noninvasive, real-time monitoring of interfacial effects during cell growth and differentiation on SiNW has not been fully explored. Here, we cultured rat adrenal pheochromocytoma (PC12) cells, a type of neural progenitor cell, directly on SiNW FET devices to monitor cell adhesion during growth and morphological changes during neuronal differentiation for a period of 5-7 d. Monitoring was performed by measuring the non-Faradaic electrical impedance of the cell-SiNW FET system using a precision LCR meter. Our SiNW FET devices exhibited changes in impedance parameters during cell growth and differentiation because of the negatively charged cell membrane, seal resistance, and membrane capacitance at the cell/SiNW interface. It was observed that during both PC12 cell growth and neuronal differentiation, the impedance magnitude increased and the phase shifted to more negative values. However, impedance changes during cell growth already plateaued 3 d after seeding, while impedance changes continued until the last observation day during differentiation. Our results also indicate that the frequency shift to above 40 kHz after growth factor induction resulted from a larger coverage of cell membrane on the SiNWs due to distinctive morphological changes according to vinculin staining. Encapsulation of PC12 cells in a hydrogel scaffold resulted in a lack of trend in impedance parameters and confirmed that impedance changes were due to the cells. Moreover, cytolysis of the differentiated PC12 cells led to significant changes in impedance parameters. Equivalent electrical circuits were used to analyze the changes in impedance values during cell growth and differentiation. The technique employed in this study can provide a platform for performing investigations of growth-factor-induced progenitor cell differentiation.
Biointerface between biological organisms and electronic devices has attracted a lot of attention since a biocompatible and functional interface can revolutionize medical applications of bioelectronics. Here, we used 3-aminopropyl trimethoxysilane (APTMS) self-assembled monolayer (SAM) to modify the surface of nanowire-based metal-oxide-semiconductor field-effect transistors (NW-MOSFETs) for pH sensing and later creation of biointerface. Electrical measurement was utilized to first verify the sensing response of unmodified NW-MOSFETs and then examine pH sensing on APTMS modified NW-MOSFETs. A biointerface was then created by immobilizing polylysine, either poly-D-lysine (PDL) or poly-L-lysine (PLL), on APTMS modified NW-MOSFETs. This biointerface was characterized by electron spectroscopy for chemical analysis (ESCA), cell biocompatibility, and fluorescent images. The results of ESCA verified the amide bonding (CONH) between polylysine and APTMS modified surface. After PC12 cultured on polylysine-APTMS modified area, highly selective areas for cell growth were observed by fluorescent microscope. Analysis and improvement of selectively cell-growth biointerface on the NW-MOSFETs gave us an insight into future development of neuronal biosensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.