ScopeObesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1‐isothiocyanate‐4‐methyl‐sulfonyl butane; SFN) on browning of white adipocytes.Methods and results3T3‐L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3‐L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2‐related factor 2/sirtuin1/peroxisome proliferator activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis, and fatty acid oxidation in 3T3‐L1 adipocytes.ConclusionSFN‐induced browning of white adipocytes enhanced the utilization of cellular fuel, and application of SFN is a promising strategy to combat obesity and obesity‐related metabolic disorder.
VES has inhibitory effects on B(a)P-induced forestomach carcinogenesis in female mice, especially by ip and it may be a potential anti-cancer agent in vivo.
Prolonged exposure to hyperoxia leads to acute lung injury. Alveolar type II cells are main target of hyperoxia-induced lung injury. However, the cellular and molecular mechanisms remain unknown. Here, we aimed to investigate the role of placental growth factor (PLGF) in hyperoxia-induced lung injury. Using experimental hyperoxia-induced lung injury model of neonatal rat and mouse lung epithelial type II cells (MLE-12), we examined the levels of PLGF in bronchoalveolar lavage fluid and in the supernatants of MLE-12 cells. Our results revealed that exogenous PLGF induced hyperoxia-induced lung injury. Furthermore, PLGF triggered a shift of vinculin from insoluble to soluble cell fraction, similar to the observation under hyperoxia stimulation. Moreover, we observed significantly reduced phosphorylation of focal adhesion kinase and increased permeability in MLE-12 cells treated with PLGF. These results suggest that PLGF triggers focal adhesion disassembly in alveolar type II cells via inhibiting the activation of focal adhesion kinase. Our findings reveal a novel role of PLGF in hyperoxia-induced lung injury and provide a potential target for the management of hyperoxia-induced acute lung injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.