This paper details the design and fabrication process of a fully integrated soft humanoid robotic hand with five finger that integrate an embedded shape memory alloy (SMA) actuator and a piezoelectric transducer (PZT) flexure sensor. Several challenges including precise control of the SMA actuator, improving power efficiency, and reducing actuation current and response time have been addressed. First, a Ni-Ti SMA strip is pretrained to a circular shape. Second, it is wrapped with a Ni-Cr resistance wire that is coated with thermally conductive and electrically isolating material. This design significantly reduces actuation current, improves circuit efficiency, and hence reduces response time and increases power efficiency. Third, an antagonistic SMA strip is used to improve the shape recovery rate. Fourth, the SMA actuator, the recovery SMA strip, and a flexure sensor are inserted into a 3D printed mold which is filled with silicon rubber materials. The flexure sensor feeds back the finger shape for precise control. Fifth, a demolding process yields a fully integrated multifunctional soft robotic finger. We also fabricated a hand assembled with five fingers and a palm. We measured its performance and specifications with experiments. We demonstrated its capability of grasping various kinds of regular or irregular objects. The soft robotic hand is very robust and has a large compliance, which makes it ideal for use in an unstructured environment. It is inherently safe to human operators as it can withstand large impacts and unintended contacts without causing any injury to human operators or damage to the environment.
Cables are complex, high-dimensional, and dynamic objects. Standard approaches to manipulate them often rely on conservative strategies that involve long series of very slow and incremental deformations, or various mechanical fixtures such as clamps, pins, or rings. We are interested in manipulating freely moving cables, in real time, with a pair of robotic grippers, and with no added mechanical constraints. The main contribution of this paper is a perception and control framework that moves in that direction, and uses real-time tactile feedback to accomplish the task of following a dangling cable. The approach relies on a vision-based tactile sensor, GelSight, that estimates the pose of the cable in the grip, and the friction forces during cable sliding. We achieve the behavior by combining two tactile-based controllers: (1) cable grip controller, where a PD controller combined with a leaky integrator regulates the gripping force to maintain the frictional sliding forces close to a suitable value; and (2) cable pose controller, where an linear–quadratic regulator controller based on a learned linear model of the cable sliding dynamics keeps the cable centered and aligned on the fingertips to prevent the cable from falling from the grip. This behavior is possible with the use of reactive gripper fitted with GelSight-based high-resolution tactile sensors. The robot can follow 1 m of cable in random configurations within two to three hand regrasps, adapting to cables of different materials and thicknesses. We demonstrate a robot grasping a headphone cable, sliding the fingers to the jack connector, and inserting it. To the best of the authors’ knowledge, this is the first implementation of real-time cable following without the aid of mechanical fixtures. Videos are available at http://gelsight.csail.mit.edu/cable/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.