Using first-principles approaches, we investigate the thermoelectric efficiency, characterized by the figure of merit ZT, in metallic atomic junctions and insulating molecular junctions. To gain insight into the properties of ZT, an analytical theory is also developed to study the dependence of ZT on lengths (l) and temperatures (T). The theory considers the combined heat current carried by electrons and phonons. We observe a characteristic temperature: T(0) = (beta/gamma(/))(1/2). When T << T(0), the electronic heat current dominates the combined heat current and ZT is proportional to T(2). When T >> T(0), the phononic heat current dominates the combined heat current and ZT tends to a saturation value. Moreover, the metallic atomic junctions and the insulating molecular junctions have opposite trend for the dependence of ZT on lengths, that is, ZT increases as the length increases for aluminum atomic junctions, while ZT decreases as the length increases for alkanethiol molecular junctions.
BackgroundMost traditional Chinese herbal formulas consist of at least four herbs. Four-Agents-Decoction (Si Wu Tang) is a documented eight hundred year old formula containing four herbs and has been widely used to relieve menstrual discomfort in Taiwan. However, no specific effect had been systematically evaluated. We applied Western methodology to assess its effectiveness and safety for primary dysmenorrhoea and to evaluate the compliance and feasibility for a future trial.Methodology/Principal FindingsA randomised, double-blind, placebo-controlled, pilot clinical trial was conducted in an ad hoc clinic setting at a teaching hospital in Taipei, Taiwan. Seventy-eight primary dysmenorrheic young women were enrolled after 326 women with self-reported menstrual discomfort in the Taipei metropolitan area of Taiwan were screened by a questionnaire and subsequently diagnosed by two gynaecologists concurrently with pelvic ultrasonography. A dosage of 15 odorless capsules daily for five days starting from the onset of bleeding or pain was administered. Participants were followed with two to four cycles for an initial washout interval, one to two baseline cycles, three to four treatment cycles, and three follow-up cycles. Study outcome was pain intensity measured by using unmarked horizontal visual analog pain scale in an online daily diary submitted directly by the participants for 5 days starting from the onset of bleeding or pain of each menstrual cycle. Overall-pain was the average pain intensity among days in pain and peak-pain was the maximal single-day pain intensity. At the end of treatment, both the overall-pain and peak-pain decreased in the Four-Agents-Decoction (Si Wu Tang) group and increased in the placebo group; however, the differences between the two groups were not statistically significant. The trends persisted to follow-up phase. Statistically significant differences in both peak-pain and overall-pain appeared in the first follow-up cycle, at which the reduced peak-pain in the Four-Agents-Decoction (Si Wu Tang) group did not differ significantly by treatment length. However, the reduced peak-pain did differ profoundly among women treated for four menstrual cycles (2.69 (2.06) cm, mean (standard deviation), for the 20 women with Four-Agents-Decoction and 4.68 (3.16) for the 22 women with placebo, p = .020.) There was no difference in adverse symptoms between the Four-Agents-Decoction (Si Wu Tang) and placebo groups.Conclusion/significanceFour-Agents-Decoction (Si Wu Tang) therapy in this pilot post-market clinical trial, while meeting the standards of conventional medicine, showed no statistically significant difference in reducing menstrual pain intensity of primary dysmenorrhoea at the end of treatment. Its use, with our dosage regimen and treatment length, was not associated with adverse reactions. The finding of statistically significant pain-reducing effect in the first follow-up cycle was unexpected and warrants further study. A larger similar trial among primary dysmenorrheic young women with lo...
We investigate the spin-dependent electric and thermoelectric properties of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using density-functional theory combined with non-equilibrium Green's function method. A giant magnetoresistance is obtained in the pristine even-width ZαGNRs and can be as high as 10(6)%. However, for the doped systems, a large magnetoresistance behavior may appear in the odd-width ZαGNRs rather than the even-width ones. This suggests that the magnetoresistance can be manipulated in a wide range by the dopants on the edges of ZαGNRs. Another interesting phenomenon is that in the B- and N-doped even-width ZαGNRs the spin Seebeck coefficient is always larger than the charge Seebeck coefficient, and a pure-spin-current thermospin device can be achieved at specific temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.