Here, we demonstrate a process to produce planar semipolar (202¯1) GaN templates on sapphire substrates. We obtain (202¯1) oriented GaN by inclined c-plane sidewall growth from etched sapphire, resulting in single crystal material with on-axis x-ray diffraction linewidth below 200 arc sec. The surface, composed of (101¯1) and (101¯0) facets, is planarized by the chemical-mechanical polishing of full 2 in. wafers, with a final surface root mean square roughness of <0.5 nm. We then analyze facet formation and roughening mechanisms on the (202¯1) surface and establish a growth condition in N2 carrier gas to maintain a planar surface for further device layer growth. Finally, the capability of these semipolar (202¯1) GaN templates to produce high quality device structures is verified by the growth and characterization of InGaN/GaN multiple quantum well structures. It is expected that the methods shown here can enable the benefits of using semipolar orientations in a scalable and practical process and can be readily extended to achieve devices on surfaces using any orientation of semipolar GaN on sapphire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.