We investigate electron spin relaxation in GaAs in the proximity of a Fe/MgO layer using spinresolved optical pump-probe spectroscopy, revealing a strong dependence of the spin relaxation time on the strength of an exchange-driven hyperfine field. The temperature dependence of this effect reveals a strong correlation with carrier freeze out, implying that at low temperatures the free carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. This result resolves a long-standing and contentious question of the origin of the spin relaxation in GaAs at low temperature when a magnetic field is present. Further, this improved fundamental understanding paves the way for future experiments exploring the time-dependent exchange interaction at the ferromagnet/semiconductor interface and its impact on spin dissipation and transport in the regime of dynamically-driven spin pumping.
An ultrafast vector magneto-optical Kerr effect (MOKE) microscope with integrated time-synchronized electrical pulses, two-dimensional magnetic fields, and low-temperature capabilities is reported. The broad range of capabilities of this instrument allows the comprehensive study of spin–orbital interaction-driven magnetization dynamics in a variety of novel magnetic materials or heterostructures: (1) electrical-pump and optical-probe spectroscopy allows the study of current-driven magnetization dynamics in the time domain, (2) two-dimensional magnetic fields along with the vector MOKE microscope allow the thorough study of the spin–orbital-interaction induced magnetization re-orientation in arbitrary directions, and (3) the low-temperature capability allows us to explore novel materials/devices where emergent phenomena appear at low temperature. We discuss the details and challenges of this instrument development and integration and present two datasets that demonstrate and benchmark the capabilities of this instrument: (a) a room-temperature time-domain study of current-induced magnetization dynamics in a ferromagnet/heavy metal bilayer and (b) a low-temperature quasi-static polar MOKE study of the magnetization of a novel compensated ferrimagnet.
We use time-resolved (TR) measurements based on the polar magneto-optical Kerr effect (MOKE) to study the magnetization dynamics excited by spin orbit torques in Py (Permalloy)/Pt and Ta/CoFeB bilayers. The analysis reveals that the field-like (FL) spin orbit torque (SOT) dominates the amplitude of the first oscillation cycle of the magnetization precession and the damping-like (DL) torque determines the final steady-state magnetization. In our bilayer samples, we have extracted the effective fields, hFL and hDL, of the two SOTs from the time-resolved magnetization oscillation spectrum. The extracted values are in good agreement with those extracted from time-integrated DCMOKE measurements, suggesting that the SOTs do not change at high frequencies. We also find that the amplitude ratio of the first oscillation to steady state is linearly proportional to the ratio hFL/hDL. The first oscillation amplitude is inversely proportional to, whereas the steady state value is independent of, the applied external field along the current direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.