RGBD images with high quality annotations, both in the form of geometric (i.e., segmentation) and structural (i.e., how do the segments mutually relate in 3D) information, provide valuable priors for a diverse range of applications in scene understanding and image manipulation. While it is now simple to acquire RGBD images, annotating them, automatically or manually, remains challenging. We present SMARTANNOTATOR, an interactive system to facilitate annotating raw RGBD images. The system performs the tedious tasks of grouping pixels, creating potential abstracted cuboids, inferring object interactions in 3D, and generates an ordered list of hypotheses. The user simply has to flip through the suggestions for segment labels, finalize a selection, and the system updates the remaining hypotheses. As annotations are finalized, the process becomes simpler with fewer ambiguities to resolve. Moreover, as more scenes are annotated, the system makes better suggestions based on the structural and geometric priors learned from previous annotation sessions. We test the system on a large number of indoor scenes across different users and experimental settings, validate the results on existing benchmark datasets, and report significant improvements over low-level annotation alternatives. (Code and benchmark datasets are publicly available on the project page.)
We introduce MeSys, a meaning-based approach, for solving English math word problems (MWPs) via understanding and reasoning in this paper. It first analyzes the text, transforms both body and question parts into their corresponding logic forms, and then performs inference on them. The associated context of each quantity is represented with proposed role-tags (e.g., nsubj, verb, etc.), which provides the flexibility for annotating an extracted math quantity with its associated context information (i.e., the physical meaning of this quantity). Statistical models are proposed to select the operator and operands. A noisy dataset is designed to assess if a solver solves MWPs mainly via understanding or mechanical pattern matching. Experimental results show that our approach outperforms existing systems on both benchmark datasets and the noisy dataset, which demonstrates that the proposed approach understands the meaning of each quantity in the text more.
Figure 1: Given a dynamic scene with rigidly moving objects, RigidFusion performs 4D reconstruction from RGB-D frames (left) and outputs camera motion (shown in green curves), fused object geometries (rendered with light blue and golden yellow), and their respective trajectories (shown in brown/purple curves). Two novel-view reconstructions from two time steps are shown on the middle panel, with frame numbers F i corresponding to different time steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.