The primary aim of this study is to explore the protective mechanisms of glial-derived neurotrophic factor (GDNF) during excitotoxicity by kainate in the hippocampus. After a 15-min microinjection with kainate, excitotoxicity was induced in the rat hippocampus. The protective effect of GDNF in the hippocampus was evaluated by administering GDNF 14 min after injection of kainate. The resulting hydroxyl free radicals were quantified by microdialysis of the hippocampus. The results show that GDNF can effectively suppress the production of kainate-induced hydroxyl free radical production. In addition, histological observation indicated the ability of GDNF to decrease the damage level of pyramidal neurons in the CA3 and CA4 areas of the hippocampus. Superoxide dismutase (SOD) activity in the hippocampus was elevated significantly at 30 min and 7 days after kainate induction, while glutathione peroxidase (cGPx) activity did not increase significantly until the seventh day. With GDNF treatment, SOD and cGPx activity in the hippocampus was elevated significantly 7 days after kainate induction. We suggest that mechanisms including a decrease in free radical generation and scavenging of free radicals might be involved in GDNF protection against kainate-induced excitotoxicity.
This work examines whether microglia-conditioned medium (MCM) is beneficial in stressed spinal cord cells or tissues. MCM was separated into two fractions by 50 kDa molecular cut-off centrifugation. MCM not only promoted survival of neuronal and oligodendroglial cells but effectively reduced LPS stimulation in spinal cord cultures. We further utilized the NYU weight-drop device to induce contusive spinal cord injury (SCI) in rats. Immediately after dropping the impactor from a height of 25 mm onto thoracic spinal segment, MCM was intrathecally administered. At 6 weeks post-injury, SCI rats receiving MCM > 50 kDa treatment showed significant hind-limb improvement over MCM < 50 kDa- or vehicle-treated SCI rats. Consistently, more preserved nerve fibers and fewer activated microglia were found in the injured epicenter of MCM-treated SCI rats. Taken together, secreted substances, mainly > 50 kDa, of microglia was neuroprotective against spinal cord injury
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.