Background: The traditional Lund-Mackay score (TLMs) is unable to subgrade the volume of inflammatory disease. We aimed to propose an effective modification and calculated the volume-based modified LM score (VMLMs), which should correlate more strongly with clinical symptoms than the TLMs. Methods: Semi-supervised learning with pseudo-labels used for self-training was adopted to train our convolutional neural networks, with the algorithm including a combination of MobileNet, SENet, and ResNet. A total of 175 CT sets, with 50 participants that would undergo sinus surgery, were recruited. The Sinonasal Outcomes Test-22 (SNOT-22) was used to assess disease-specific symptoms before and after surgery. A 3D-projected view was created and VMLMs were calculated for further comparison. Results: Our methods showed a significant improvement both in sinus classification and segmentation as compared to state-of-the-art networks, with an average Dice coefficient of 91.57%, an MioU of 89.43%, and a pixel accuracy of 99.75%. The sinus volume exhibited sex dimorphism. There was a significant positive correlation between volume and height, but a trend toward a negative correlation between maxillary sinus and age. Subjects who underwent surgery had significantly greater TLMs (14.9 vs. 7.38) and VMLMs (11.65 vs. 4.34) than those who did not. ROC-AUC analyses showed that the VMLMs had excellent discrimination at classifying a high probability of postoperative improvement with SNOT-22 reduction. Conclusions: Our method is suitable for obtaining detailed information, excellent sinus boundary prediction, and differentiating the target from its surrounding structure. These findings demonstrate the promise of CT-based volumetric analysis of sinus mucosal inflammation.
Melt spinning machines must be set up according to the process parameters that result in the best end product quality. In this study, artificial intelligence algorithms were employed to create a system that detects abnormal processing parameters and suggests strategies to improve quality. Polypropylene (PP) was selected as the experimental material, and the quality achieved by adjusting the melt spinning machine’s processing parameter settings was used as the basis for judgement. The processing parameters included screw temperature, gear pump temperature, die head temperature, screw speed, gear pump speed, and take-up speed as the six control factors. The four quality characteristics included fineness, breaking strength, elongation at break, and elastic energy modulus. In the first part of our study, we applied fast deep-learning characteristic grid calculations on a 440-item historical data set to train a deep learning neural network and determine methods for multi-quality optimization. In the second part, with the best processing parameters as a benchmark, and given abnormal quality data derived from processing parameter settings deviating from these optimal values, several machine learning and deep learning methods were compared in their ability to find the settings responsible for the abnormal data, which was randomly split into a 210-item training data set and a 210-item verification data set. The random forest method proved to be the best at identifying responsible parameter settings, with accuracy rates of single and double identification classifications together of 100%, for single factor classification of 98.3%, and for double factor classification of 96.0%, thereby confirming that the diagnostic method proposed in this study can effectively predict product abnormality and find the parameter settings responsible for product abnormality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.