International audienceThis paper proposes a new descriptor for person re- identi cation building on the recent advances of Fisher Vectors. Speci cally, a simple vector of attributes consisting in the pixel coordinates, its intensity as well as the rst and second-order derivatives is computed for each pixel of the image. These local descriptors are turned into Fisher Vectors before being pooled to produce a global representation of the image. The so-obtained Local Descriptors encoded by Fisher Vector (LDFV) have been validated through experiments on two person re-identi cation benchmarks (VIPeR and ETHZ), achieving state-of-the-art performance on both datasets
This paper proposes a novel image representation which can properly handle both background and illumination variations. It is therefore adapted to the person/face reidentification tasks, avoiding the use of any additional pre-processing steps such as foreground-background separation or face and body part segmentation. This novel representation relies on the combination of Biologically Inspired Features (BIF) and covariance descriptors used to compute the similarity of the BIF features at neighboring scales. Hence, we will refer to it as the BiCov representation. To show the effectiveness of BiCov, this paper conducts experiments on two person re-identification tasks (VIPeR and ETHZ) and one face verification task (LFW), on which it improves the current state-ofthe-art performance.
Avoiding the use of complicated pre-processing steps such as accurate face and body part segmentation or image normalization, this paper proposes a novel face/person image representation which can properly handle background and illumination variations. Denoted as gBiCov, this representation relies on the combination of Biologically Inspired Features (BIF) and Covariance descriptors [1]. More precisely, gBiCov is obtained by computing and encoding the difference between BIF features at different scales. The distance between two persons can then be efficiently measured by computing the Euclidean distance of their signatures, avoiding some time consuming operations in Riemannian manifold required by the use of Covariance descriptors. In addition, the recently proposed KISSME framework [2] is adopted to learn a metric adapted to the representation. To show the effectiveness of gBiCov, experiments are conducted on three person re-identification tasks (VIPeR, i-LIDS and ETHZ) and one face verification task (LFW), on which competitive results are obtained. As an example, the matching rate at rank 1 on the VIPeR dataset is of 31.11%, improving the best previously published result by more than 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.