In photosynthetic reaction centers from purple bacteria (PbRCs) from Rhodobacter sphaeroides, the secondary quinone QB accepts two electrons and two protons via electron-coupled proton transfer (PT). Here, we identify PT pathways that proceed toward the QB binding site, using a quantum mechanical/molecular mechanical approach. As the first electron is transferred to QB, the formation of the Grotthuss-like pre-PT H-bond network is observed along Asp-L213, Ser-L223, and the distal QB carbonyl O site. As the second electron is transferred, the formation of a low-barrier H-bond is observed between His-L190 at Fe and the proximal QB carbonyl O site, which facilitates the second PT. As QBH2 leaves PbRC, a chain of water molecules connects protonated Glu-L212 and deprotonated His-L190 forms, which serves as a pathway for the His-L190 reprotonation. The findings of the second pathway, which does not involve Glu-L212, and the third pathway, which proceeds from Glu-L212 to His-L190, provide a mechanism for PT commonly used among PbRCs.
In photosystem II (PSII) and photosynthetic reaction centers from purple bacteria (PbRC), the electron released from the electronically excited chlorophyll is transferred to the terminal electron acceptor quinone, QB. QB accepts two electrons and two protons before leaving the protein. We investigated the molecular mechanism of quinone exchange in PSII, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations. MD simulations suggest that the release of QB leads to the transformation of the short helix (D1-Phe260 to D1-Ser264), which is adjacent to the stromal helix de (D1-Asn247 to D1-Ile259), into a loop and to the formation of a water-intake channel. Water molecules enter the QB binding pocket via the channel and form an H-bond network. QM/MM calculations indicate that the H-bond network serves as a proton-transfer pathway for the reprotonation of D1-His215, the proton donor during QBH–/QBH2 conversion. Together with the absence of the corresponding short helix but the presence of Glu-L212 in PbRC, it seems likely that the two type-II reaction centers undergo quinone exchange via different mechanisms.
Photo-induced charge separation, which is terminated by electron transfer from the primary quinone QA to the secondary quinone QB, provides the driving force for O2 evolution in photosystem II (PSII). However, the backward charge recombination using the same electron-transfer pathway leads to the triplet chlorophyll formation, generating harmful singlet-oxygen species. Here, we investigated the molecular mechanism of proton-mediated QA⋅– stabilization. Quantum mechanical/molecular mechanical (QM/MM) calculations show that in response to the loss of the bicarbonate ligand, a low-barrier H-bond forms between D2-His214 and QA⋅–. The migration of the proton from D2-His214 toward QA⋅– stabilizes QA⋅–. The release of the bicarbonate ligand from the binding Fe2+ site is an energetically uphill process, whereas the bidentate-to-monodentate reorientation is almost isoenergetic. These suggest that the bicarbonate protonation and decomposition may be a basis of the mechanism of photoprotection via QA⋅–/QAH⋅ stabilization, increasing the QA redox potential and activating a charge-recombination pathway that does not generate the harmful singlet oxygen.
In photosynthetic reaction centers from purple bacteria (PbRCs), light-induced charge separation leads to the reduction of the terminal electron acceptor quinone, QB. The reduction of QB to QB •– is followed by protonation via Asp-L213 and Ser-L223 in PbRC from Rhodobacter sphaeroides. However, Asp-L213 is replaced with nontitratable Asn-L222 and Asn-L213 in PbRCs from Thermochromatium tepidum and Blastochloris viridis, respectively. Here, we investigated the energetics of proton transfer along the asparagine-involved H-bond network using a quantum mechanical/molecular mechanical approach. The potential energy profile for the H-bond between H3O+ and the carbonyl O site of Asn-L222 shows that the proton is predominantly localized at the Asn-L222 moiety in the T. tepidum PbRC protein environment, easily forming the enol species. The release of the proton from the amide −NH2 site toward Ser-L232 via tautomerization suffers from the energy barrier. Upon reorientation of Asn-L222, the enol −OH site forms a short low-barrier H-bond with Ser-L232, facilitating protonation of QB •– in a Grotthuss-like mechanism. This is a basis of how asparagine or glutamine side chains function as acceptors/donors in proton transfer pathways.
In photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II (PSII), the photoinduced charge separation is terminated by an electron transfer between the primary (QA) and secondary (QB) quinones. Here, we investigate the electron transfer route, calculating the superexchange coupling (H QA–QB) for electron transfer from QA to QB in the protein environment. H QA–QB is significantly larger in PbRC than in PSII. In superexchange electron tunneling, the electron transfer via unoccupied molecular orbitals of the nonheme Fe complex (QA → Fe → QB) is pronounced in PbRC, whereas the electron transfer via occupied molecular orbitals (Fe → QB followed by QA → Fe) is pronounced in PSII. The significantly large H QA–QB is caused by a water molecule that donates the H-bond to the ligand Glu-M234 in PbRC. The corresponding water molecule is absent in PSII due to the existence of D1-Tyr246. H QA–QB increases in response to the Ser-L223···QB H-bond formation caused by an extension of the H-bond network, which facilitates charge delocalization over the QB site. This explains the observed discrepancy in the QA-to-QB electron transfer between PbRC and PSII, despite their structural similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.