Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes 1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.
Summary Neural progenitor cells (NPCs) in the adult subventricular zone (SVZ) are associated with ependymal and vasculature niches which regulate stem cell self-renewal and differentiation. Activated Type B stem cells and their progeny, the transit amplifying Type C cells, which express EGFR, are most highly associated with vascular cells, indicating that this niche supports lineage progression. Here we show that proliferative SVZ progenitor cells home to endothelial cells in a stromal-derived factor 1 (SDF1) and CXC chemokine receptor 4 (CXCR4) dependent manner. We show that SDF1 strongly upregulates EGFR and α6 integrin in activated type B and type C cells, enhancing their activated state and their ability to bind laminin in the vascular niche. SDF1 increases the motility of Type A neuroblasts, which migrate from the SVZ towards the olfactory bulb. Thus, differential responses to SDF1 can regulate progenitor cell occupancy of and exit from the adult SVZ vascular niche.
Microglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then, we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing them with parenchymal microglia (PCMs) in their morphological activities including during microglial depletion and repopulation. Molecularly, we identify P2RY12 receptors as a regulator of CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, microglial elimination triggered capillary dilation, blood flow increase, and impaired vasodilation that were recapitulated in P2RY12−/− and PANX1−/− mice suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.
It has been debated whether asymmetric distribution of cell surface receptors during mitosis could generate asymmetric cell divisions by yielding daughters with different environmental responsiveness and, thus, different fates. We have found that in mouse embryonic forebrain ventricular and subventricular zones, the EGFR can distribute asymmetrically during mitosis in vivo and in vitro. This occurs during divisions yielding two Nestin+ progenitor cells, via an actin-dependent mechanism. The resulting sibling progenitor cells respond differently to EGFR ligand in terms of migration and proliferation. Moreover, they express different phenotypic markers: the EGFRhigh daughter usually has radial glial/astrocytic markers, while its EGFRlow sister lacks them, indicating fate divergence. Lineage trees of cultured cortical glioblasts reveal repeated EGFR asymmetric distribution, and asymmetric divisions underlie formation of oligodendrocytes and astrocytes in clones. These data suggest that asymmetric EGFR distribution contributes to forebrain development by creating progenitors with different proliferative, migratory, and differentiation responses to ligand.
Summary The bHLH transcription factors that regulate early development of the central nervous system can generally be classified as either anti-neural or pro-neural. Initial expression of anti-neural factors prevents cell cycle exit and thereby expands the pool of neural progenitors. Subsequent (and typically transient) expression of pro-neural factors promotes cell cycle exit, subtype specification and differentiation. Against this backdrop, the bHLH transcription factor Olig2 in the oligodendrocyte lineage is unorthodox, showing anti-neural functions in multipotent CNS progenitor cells but also sustained expression and pro-neural functions in formation of oligodendrocytes. We show here that the proliferative function of Olig2 is controlled by developmentally regulated phosphorylation of a conserved triple serine motif within the amino terminal domain. In the phosphorylated state, Olig2 maintains anti-neural (i.e. pro-mitotic) functions that are reflected in human glioma cells and in a genetically defined murine model of primary glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.