GA inhibits HT-29 proliferation via induction of apoptosis. The anti-cancer effects are likely mediated by death receptor (extrinsic) and mitochondrial (intrinsic) pathways.
BackgroundPulmonary vascular medial hypertrophy in hypoxic pulmonary arterial hypertension (PAH) is caused in part by decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Puerarin, an isoflavone purified from the Chinese medicinal herb kudzu, ameliorates chronic hypoxic PAH in animal models. Here we investigated the effects of puerarin on apoptosis of hypoxic human PASMCs (HPASMCs), and to determine the possible underlying mechanisms.Methodology/Principal FindingsHPASMCs were cultured for 24 h in normoxia or hypoxia (5% O2) conditions with and without puerarin. Cell number and viability were determined with a hemacytometer or a cell counting kit. Apoptosis was detected with a TUNEL test, rhodamine-123 (R-123) fluorescence, a colorimetric assay, western blots, immunohistochemical staining and RT-PCR. Hypoxia inhibited mitochondria-dependent apoptosis and promoted HPASMC growth. In contrast, after puerarin (50 µM or more) intervention, cell growth was inhibited and apoptosis was observed. Puerarin-induced apoptosis in hypoxic HPASMCs was accompanied by reduced mitochondrial membrane potential, cytochrome c release from the mitochondria, caspase-9 activation, and Bcl-2 down-regulation with concurrent Bax up-regulation.Conclusions/SignificancePuerarin promoted apoptosis in hypoxic HPASMCs by acting on the mitochondria-dependent pathway. These results suggest a new mechanism of puerarin relevant to the management of clinical hypoxic pulmonary hypertension.
Astragalus mongholicus (MG) and Astragalus membranaceus (MJ), both generally known as Huangqi in China, are two perennial herbals widely used in variety diseases. However, there were still some differences in the chemical ingredients between MG and MJ. In this paper, metabolomics combined with the ultra-high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) was employed to contrastively analyze the chemical constituents between MG and MJ. As a result, principal component analysis showed that MG and MJ were separated clearly. A total of 53 chemical markers were successfully identified for the discrimination of MG and MJ. Of them, the contents of 36 components including Astragaloside I~III, Astragaloside IV, Agroastragaloside I, etc. in MJ were significantly higher than those in MG. On the contrary, the contents of 17 other components including coumaric acid, formononetin, sophoricoside, etc. in MG were obviously higher than those in MJ. The results showed that the distinctive constituents in MG and MJ were remarkable, and MJ may own stronger pharmacological activities than MG. In a word, MG and MJ may be treated as two different herbs. This paper demonstrated that metabolomics was a vitally credible technology to rapidly screen the characteristic chemical composition of traditional Chinese medicine.
Neogenkwanines A-H (1-8), eight daphnane-type diterpenes possessing new skeletons with 4,7-or 4,6-ether group, along with seven known ones (10-16), were isolated from Daphne genkwa. Their structures and absolute configurations were established by analysis of their NMR, X-ray crystallography, CD exciton chirality data and hydrolysis experiments. In addition, an MTT assay was used to examine the growthinhibitory effects of all the new isolates on HL-60, Hep3B, and U87 cells; Compounds 3, 4 and 5 exhibited significant inhibitory effects against Hep3B cell lines with IC 50 values of 7.61, 8.16 and 8.35 µM, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.