Most cognitive theories assume that confidence and choice happen simultaneously and are based on the same information. The 3 studies presented in this article instead show that confidence judgments can arise, at least in part, from a postdecisional evidence accumulation process. As a result of this process, increasing the time between making a choice and confidence judgment improves confidence resolution. This finding contradicts the notion that confidence judgments are biased by decision makers seeking confirmatory evidence. Further analysis reveals that the improved resolution is due to a reduction in confidence in incorrect responses, while confidence in correct responses remains relatively constant. These results are modeled with a sequential sampling process that allows evidence accumulation to continue after a choice is made and maps the amount of accumulated evidence onto a confidence rating. The cognitive modeling analysis reveals that the rate of evidence accumulation following a choice does slow relative to the rate preceding choice. The analysis also shows that the asymmetry between confidence in correct and incorrect choices is compatible with state-dependent decay in the accumulated evidence: Evidence consistent with the current state results in a deceleration of accumulated evidence and consequently evidence appears to have a decreasing impact on observed confidence. In contrast, evidence inconsistent with the current state results in an acceleration of accumulated evidence toward the opposite direction and consequently evidence appears to have an increasing impact on confidence. Taken together, this process-level understanding of confidence suggests a simple strategy for improving confidence accuracy: take a bit more time to make confidence judgments.
These results demonstrate that cGMP-elevating agents inhibit [3H]thymidine incorporation and thus the growth of VSMC, and this inhibition appears to attenuate EGF-activated signal transduction pathway by preventing Ras-dependent activation of Raf-1.
Decision-making relies on a process of evidence accumulation which generates support for possible hypotheses. Models of this process derived from classical stochastic theories assume that information accumulates by moving across definite levels of evidence, carving out a single trajectory across these levels over time. In contrast, quantum decision models assume that evidence develops over time in a superposition state analogous to a wavelike pattern and that judgments and decisions are constructed by a measurement process by which a definite state of evidence is created from this indefinite state. This constructive process implies that interference effects should arise when multiple responses (measurements) are elicited over time. We report such an interference effect during a motion direction discrimination task. Decisions during the task interfered with subsequent confidence judgments, resulting in less extreme and more accurate judgments than when no decision was elicited. These results provide qualitative and quantitative support for a quantum random walk model of evidence accumulation over the popular Markov random walk model. We discuss the cognitive and neural implications of modeling evidence accumulation as a quantum dynamic system.ecisions in a wide range of tasks (e.g., inferring the presence or absence of a disease, the guilt or innocence of a suspect, and the left or right direction of enemy movement) require evidence to be accumulated in support of different hypotheses. Arguably, the most successful theory of evidence accumulation in humans and other animals is Markov random walk (MRW) theory (and diffusion models, their continuous space extensions) (1, 2). MRWs can be viewed as psychological implementations of a first-order Bayesian inference process that assigns a posterior probability to each hypothesis (3). MRWs can account for choices, response times, and confidence for a variety of different decision types (2, 4). Moreover, these models of the accumulation process have been connected to neural activity during decision-making (5, 6).According to MRW models, when deciding between two hypotheses, the cumulative evidence for or against each hypothesis realizes different levels at different times to generate a single particle-like trajectory of evidence levels across time (Fig. 1). At any point in time, the decision-maker has a definite level of evidence, and choices are made by comparing the existing level of evidence against a criterion. Evidence above the criterion favors one option, and evidence below it favors the alternative. Other responses are modeled in a similar manner; for example, confidence ratings are modeled by mapping evidence states onto one or more ratings (4). However, this idea that judgments and decisions are simply read out from the existing level of evidence-henceforth referred to as the "read-out" assumption-is inconsistent with the well-established idea that preferences and beliefs are constructed rather than revealed by judgments and decisions (7).We present an alternati...
Protective knowledge, skills, perceptions, and intentions of youth from 1 developing country can be significantly improved by youth intervention delivered through the schools. Longer follow-up is needed to determine if risk behaviors will be reduced and how long protective results will be sustained.
Data from 752 Bahamian youth and their parents were analyzed to examine the relationship of youth depression with youth risk involvement, parental monitoring, and parent-youth communication. Depressed youth were older, more likely to engage in risk behaviors, and they perceived significantly lower levels of parental monitoring and higher levels of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.