The high-speed SSVEP-based BCIs using the TRCA method have great potential for various applications in communication and control.
Canonical correlation analysis (CCA) has been widely used in the detection of the steady-state visual evoked potentials (SSVEPs) in brain-computer interfaces (BCIs). The standard CCA method, which uses sinusoidal signals as reference signals, was first proposed for SSVEP detection without calibration. However, the detection performance can be deteriorated by the interference from the spontaneous EEG activities. Recently, various extended methods have been developed to incorporate individual EEG calibration data in CCA to improve the detection performance. Although advantages of the extended CCA methods have been demonstrated in separate studies, a comprehensive comparison between these methods is still missing. This study performed a comparison of the existing CCA-based SSVEP detection methods using a 12-class SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment. Classification accuracy and information transfer rate (ITR) were used for performance evaluation. The results suggest that individual calibration data can significantly improve the detection performance. Furthermore, the results showed that the combination method based on the standard CCA and the individual template based CCA (IT-CCA) achieved the highest performance.
Abstract-Dry and noncontact electroencephalographic (EEG) electrodes, which do not require gel or even direct scalp coupling, have been considered as an enabler of practical, real-world, brain-computer interface (BCI) platforms. This study compares wet electrodes to dry and through hair, noncontact electrodes within a steady state visual evoked potential (SSVEP) BCI paradigm. The construction of a dry contact electrode, featuring fingered contact posts and active buffering circuitry is presented. Additionally, the development of a new, noncontact, capacitive electrode that utilizes a custom integrated, high-impedance analog front-end is introduced. Offline tests on 10 subjects characterize the signal quality from the different electrodes and demonstrate that acquisition of small amplitude, SSVEP signals is possible, even through hair using the new integrated noncontact sensor. Online BCI experiments demonstrate that the information transfer rate (ITR) with the dry electrodes is comparable to that of wet electrodes, completely without the need for gel or other conductive media. In addition, data from the noncontact electrode, operating on the top of hair, show a maximum ITR in excess of 19 bits/min at 100% accuracy (versus 29.2 bits/min for wet electrodes and 34.4 bits/min for dry electrodes), a level that has never been demonstrated before. The results of these experiments show that both dry and noncontact electrodes, with further development, may become a viable tool for both future mobile BCI and general EEG applications.Index Terms-Brain-computer interface (BCI), capacitive electrodes, dry electrodes, electroencephalographic (EEG), noncontact electrodes, steady state visual evoked potential (SSVEP).
Moving a brain-computer interface (BCI) system from a laboratory demonstration to real-life applications still poses severe challenges to the BCI community. This study aims to integrate a mobile and wireless electroencephalogram (EEG) system and a signal-processing platform based on a cell phone into a truly wearable and wireless online BCI. Its practicality and implications in a routine BCI are demonstrated through the realization and testing of a steady-state visual evoked potential (SSVEP)-based BCI. This study implemented and tested online signal processing methods in both time and frequency domains for detecting SSVEPs. The results of this study showed that the performance of the proposed cell-phone-based platform was comparable, in terms of the information transfer rate, with other BCI systems using bulky commercial EEG systems and personal computers. To the best of our knowledge, this study is the first to demonstrate a truly portable, cost-effective and miniature cell-phone-based platform for online BCIs.
Drowsy driving is one of the major causes that lead to fatal accidents worldwide. For the past two decades, many studies have explored the feasibility and practicality of drowsiness detection using electroencephalogram (EEG)-based brain-computer interface (BCI) systems. However, on the pathway of transitioning laboratory-oriented BCI into real-world environments, one chief challenge is to obtain high-quality EEG with convenience and long-term wearing comfort. Recently, acquiring EEG from non-hair-bearing (NHB) scalp areas has been proposed as an alternative solution to avoid many of the technical limitations resulted from the interference of hair between electrodes and the skin. Furthermore, our pilot study has shown that informative drowsiness-related EEG features are accessible from the NHB areas. This study extends the previous work to quantitatively evaluate the performance of drowsiness detection using cross-session validation with widely studied machine-learning classifiers. The offline results showed no significant difference between the accuracy of drowsiness detection using the NHB EEG and the whole-scalp EEG across all subjects ( ). The findings of this study demonstrate the efficacy and practicality of the NHB EEG for drowsiness detection and could catalyze explorations and developments of many other real-world BCI applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.