Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.
Organometal halide
perovskites have recently emerged as a highly
promising class of functional materials for a variety of applications.
The exceptional structural tunability enables these materials to possess
three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures
at the molecular level. Remarkable progress has been realized in the
research of perovskites in recent years, focusing mainly on 3D and
2D structures but leaving low-dimensional 1D and 0D structures significantly
underexplored. Here we offer our perspective on the most exciting
developments in the low-dimensional organometal halide perovskites.
Due to the strong quantum confinement and site isolation, 1D and 0D
perovskites exhibit remarkable and useful properties that are significantly
different from those of 3D and 2D perovskites. The excitement about
the recent developments lies not only in the specific achievements
but also in what these materials represent in terms of a new paradigm
in materials design.
Bright light-emitting diodes based on solution-processable organometal halide perovskite nanoplatelets are demonstrated. The nanoplatelets created using a facile one-pot synthesis exhibit narrow-band emissions at 529 nm and quantum yield up to 85%. Using these nanoparticles as emitters, efficient electroluminescence is achieved with a brightness of 10 590 cd m(-2) . These ligand-capped nanoplatelets appear to be quite stable in moisture, allowing out-of-glovebox device fabrication.
Highly bright light-emitting diodes based on solution-processed all-inorganic perovskite thin film are demonstrated. The cesium lead bromide (CsPbBr ) created using a new poly(ethylene oxide)-additive spin-coating method exhibits photoluminescence quantum yield up to 60% and excellent uniformity of electrical current distribution. Using the smooth CsPbBr films as emitting layers, green perovskite-based light-emitting diodes (PeLEDs) exhibit electroluminescent brightness and efficiency above 53 000 cd m and 4%: a new benchmark of device performance for all-inorganic PeLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.