In recent years, an increasing number of people have become concerned about their health. Most chronic diseases are related to lifestyle, and daily activity records can be used as an important indicator of health. Specifically, using advanced technology to automatically monitor actual activities can effectively prevent and manage chronic diseases. The data used in this paper were obtained from acceleration sensors and gyroscopes integrated in smartphones. We designed an efficient Adaboost-Stump running on a smartphone to classify five common activities: cycling, running, sitting, standing, and walking and achieved a satisfactory classification accuracy of 98%. We designed an online learning method, and the classification model requires continuous training with actual data. The parameters in the model then become increasingly fitted to the specific user, which allows the classification accuracy to reach 95% under different use environments. In addition, this paper also utilized the OpenCL framework to design the program in parallel. This process can enhance the computing efficiency approximately ninefold.
Long-term electrocardiogram (ECG) has become one of the important diagnostic assist methods in clinical cardiovascular domain. Long-term ECG is primarily used for the detection of various cardiovascular diseases that are caused by various cardiac arrhythmia such as myocardial infarction, cardiomyopathy, and myocarditis. In the past few years, the development of an automatic heartbeat classification method has been a challenge. With the accumulation of medical data, personalized heartbeat classification of a patient has become possible. For the long-term data accumulation method, such as the holter, it is difficult to obtain the analysis results in a short time using the original method of serial design. The pressure to develop a personalized automatic classification model is high. To solve these challenges, this paper implemented a parallel general regression neural network (GRNN) to classify the heartbeat, and achieved a 95% accuracy according to the Association for the Advancement of Medical Instrumentation. We designed an online learning program to form a personalized classification model for patients. The achieved accuracy of the model is 88% compared to the specific ECG data of the patients. The efficiency of the parallel GRNN with GTX780Ti can improve by 450 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.