Ti-6Al-4V, although widely used in dental materials, causes peri-implant inflammation due to the long-term accumulation of bacteria around the implant, resulting in bone loss and eventual failure of the implant. This study aims to overcome the problem of dental implant infection by analyzing the influence of Ti-6Al-4V surface characteristics on the quantity of accumulated bacteria. Ti-6Al-4V specimens, each with different surface roughness are produced by mechanical, chemical, and electrolytic polishing. The surface roughness, surface contact angle, surface oxygen content, and surface structure were measured via atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM), drop shape analysis (using sessile drop), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The micro and macro surface roughness are 10.33–120.05 nm and 0.68–2.34 μm, respectively. The surface X direction and Y direction contact angle are 21.38°–96.44° and 18.37°–92.72°, respectively. The surface oxygen content is 47.36–59.89 at.%. The number of colonies and the optical density (OD) are 7.87 × 106–17.73 × 106 CFU/mL and 0.189–0.245, respectively. The bacterial inhibition were the most effective under the electrolytic polishing of Ti-6Al-4V. The electrolytic polishing of Ti-6Al-4V exhibited the best surface characteristics: the surface roughness of 10 nm, surface contact angle of 92°, and surface oxygen content of 54 at.%, respectively. This provides the best surface treatment of Ti-6Al-4V in dental implants.
Selective Electron Beam Additive Manufacturing (SEBAM) is a promising powder bed fusion additive manufacturing technique for titanium alloys that select particular area melting in different energy density for producing complexly shaped biomedical devices. For most commercial Ti6Al4V porous medical devices, the gradient energy density is usually applied to manufacture in one component during the SEBAM process which selects different energy density built on particular zones. This paper presents gradient energy density base characterization study on an SEBAM built rectangular specimen with a size of 3 mm × 20 mm × 60 mm. The specimen was divided into three zones were built in gradient energy density from 16 to 26.5 J/mm3. The microstructure and mechanical properties were investigated by means of scanning electron microscopy, X-ray diffraction, transmission electron microscopy and mechanical test. The α′ martensitic and lack of fusion were observed in the low energy density (LED) built zone. However, no α′ phase and no irregular pores were observed both in overlap energy density (OED) and high energy density (HED) built zones located at the middle and bottom of the specimen respectively. This implies the top location and lower energy density have positive effects on the cooling rate but negative effects on densification. The subsequence mechanical properties result also supports this point. Moreover, the intermetallic Ti3Al found in the bottom may be due to the heat transfer from the following melting layer. Furthermore, the microstructure evolution in gradient energy built zones is discussed based on the findings of the microstructure and thermal history correlation analysis.
Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu 2+ and Ag 2+ ions have been added onto biomaterials for increasing the antibacterial properties, but they are known to damage biofilm. The occurrence of nanoparticles can also improve the antibacterial properties of biomaterials through various methods. In this study, we used Escherichia coli and analyzed the microstructures of American Iron and Steel Institute (AISI) 430 stainless steel with a 0.18 mass % N alloy element. During a lower temperature aging, the microstructure of the as-quenched specimen is essentially a ferrite and martensite duplex matrix with some Cr 2 N precipitates formed. Additionally, the antibacterial properties of the alloy for E. coli ranged from 3% to 60%, consistent with the presence of Cr 2 N precipitates. When aged at a lower temperature, which resulted in nano-Cr 2 N precipitation, the specimen possessed the highest antibacterial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.