A smart contrast agent for magnetic resonance imaging (MRI) can be used to exploit an enzymatic activity specific to the tissue or disease state signified by converting an MRI-inactivated agent to an activated MRI agent. In this study, a beta-galactopyranose-containing gadolinium(III) complex [Gd(DOTA-FPG)(H 2O)] was designed, synthesized, and characterized as being potentially suitable for a bioactivated MRI contrast agent. The (17)O NMR experiments were conducted to estimate the water exchange rate k e x 298 and rotational correlation time tau R 298 . The k ex 298 value of [Gd(DOTA-FPG)(H 2O)] is similar to that of [Gd(DO3A-bz-NO 2)(H 2O)]. The rotational correlation time value of [Gd(DOTA-FPG)(H 2O)] is dramatically longer than that of [Gd(DOTA)(H 2O)] (-) Relaxometric studies show that the percentage change in the T 1 value of [Gd(DOTA-FPG)(H 2O)] decreases dramatically in the presence of beta-galactosidase and human serum albumin. The T(1) change percentage of [Gd(DOTA-FPG)(H 2O)] (60%) is significantly higher than those of Egad and gadolinium(III)-1-(4-(2-(1-(4,7,10-triscarboxymethyl-(1,4,7,10-tetraazacyclododecyl)))-ethylcarbamoyloxymethyl)-2-nitrophenyl)-beta- d-glucopyronuronate. The signal intensity of the MR image for [Gd(DOTA-FPG)(H 2O)] in the presence of human serum albumin and beta-galactosidase (2670 +/- 210) is significantly higher than that of [Gd(DOTA-FPG)(H 2O)] in the sodium phosphate buffer solution (1490 +/- 160). In addition, the MR images show a higher-intensity enhancement in CT26/beta-gal tumor with beta-galactosidase gene expression but not for the CT26 tumor without beta-galactosidase gene expression. We conclude that [Gd(DOTA-FPG)(H 2O)] is a suitable candidate for a bioactivated MRI contrast agent in tracing gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.