Prediction of protein catalytic residues provides useful information for the studies of protein functions. Most of the existing methods combine both structure and sequence information but heavily rely on sequence conservation from multiple sequence alignments. The contribution of structure information is usually less than that of sequence conservation in existing methods. We found a novel structure feature, residue side chain orientation, which is the first structure-based feature that achieves prediction results comparable to that of evolutionary sequence conservation. We developed a structure-based method, Enzyme Catalytic residue SIde-chain Arrangement (EXIA), which is based on residue side chain orientations and backbone flexibility of protein structure. The prediction that uses EXIA outperforms existing structure-based features. The prediction quality of combing EXIA and sequence conservation exceeds that of the state-of-the-art prediction methods. EXIA is designed to predict catalytic residues from single protein structure without needing sequence or structure alignments. It provides invaluable information when there is no sufficient or reliable homology information for target protein. We found that catalytic residues have very special side chain orientation and designed the EXIA method based on the newly discovered feature. It was also found that EXIA performs well for a dataset of enzymes without any bounded ligand in their crystallographic structures.
Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.
We propose a method (EXIA2) of catalytic residue prediction based on protein structure without needing homology information. The method is based on the special side chain orientation of catalytic residues. We found that the side chain of catalytic residues usually points to the center of the catalytic site. The special orientation is usually observed in catalytic residues but not in noncatalytic residues, which usually have random side chain orientation. The method is shown to be the most accurate catalytic residue prediction method currently when combined with PSI-Blast sequence conservation. It performs better than other competing methods on several benchmark datasets that include over 1,200 enzyme structures. The areas under the ROC curve (AUC) on these benchmark datasets are in the range from 0.934 to 0.968.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.