Abstract:In experiments on nonlinear-optical transmission of picosecond laser pulses at the wavelength of 1.064 μm threeorder-of-magnitude enhancement of the photoinduced absorption in optically anisotropic mesoporous silicon films compared to crystalline silicon (c-Si) was found. The effect is not sensitive to the polarization of the laser radiation and it saturates at laser peak intensities about 5 MW/cm 2 . Higher laser intensity results in the polarization-sensitive photoinduced absorption, which is merely one-order-of-magnitude more effective than in c-Si. These efficient nonlinear-optical responses can be attributed to the resonant excitation of the defect states in the direct gap of silicon and local-field enhancement in the mesoporous films. Total transmittance of the birefringent mesoporous silicon film versus the laser intensity for the sample of 49% porosity. The crystallographic direction [001] corresponds to the optical axis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.