The equations of state and the structural, thermodynamic, and transport properties of the two- and three-dimensional nonideal dissipative systems consisting of particles interacting with different isotropic pair potentials are studied in a wide range of parameters typical for laboratory dusty plasma. Simple semiempirical expression for the energy density in liquid systems is considered. Comparison of the theoretical and numerical results is presented.
The results are given of an experimental investigation of heat transport processes in fluid dusty structures in rf-discharge plasmas under different conditions: for discharge in argon, and for discharge in air under an action of electron beam. The analysis of steady-state and unsteady-state heat transfer is used to obtain the coefficients of thermal conductivity and thermal diffusivity under the assumption that the observed heat transport is associated with a thermal conduction in the dusty component of plasmas. The temperature dependence of these coefficients is obtained, which agrees qualitatively with the results of numerical simulation for simple monatomic liquids.
Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.