Ecosystem carbon dioxide, energy, and water fluxes were measured using eddy covariance in a fresh clear-cut surrounded by a mixed spruce-birch-aspen forest in the boreal zone of European Russia. Measurements were initiated in spring 2016 following timber harvest and continued for five months. The influence of surrounding forest on air flow and turbulent fluxes within the clear-cut were examined using a process-based two-dimensional (2D) hydrodynamic turbulent exchange model. The clear-cut was a source of CO 2 to the atmosphere prior to onset of vegetation growth during early spring. During this period the mean daily latent (LE) and sensible (H) heat fluxes were very similar and the Bowen ratio (b = H/LE) averaged about 1.0. Daily net ecosystem exchange of CO 2 (NEE) was around 0 gC m À2 d À1 following onset of vegetation growth from mid-spring through summer, while b declined to 0.6-0.7. There was strong diurnal variability in NEE, LE and H over the measurement period that was governed by solar radiation and temperature as well as the leaf area index (LAI) of regrown vegetation. Modeled vertical CO 2 and H 2 O fluxes along a transect that crossed the clear-cut and coincided with the dominate wind direction showed that the clear-cut strongly influenced turbulent fluxes within the atmospheric surface layer. Furthermore, modeled atmospheric dynamics suggested that the clear-cut had a large influence on turbulent fluxes in the downwind forest, but little impact on the upwind side. An aggregated approach including field measurements and process-based models can be a useful approach to estimate energy, water and carbon dioxide fluxes in non-uniform forest landscapes.
We present a modeling tool capable of computing carbon dioxide (CO2) fluxes over a non-uniform boreal peatland. The three-dimensional (3D) hydrodynamic model is based on the “one-and-a-half” closure scheme of the system of the Reynolds-Averaged Navier–Stokes and continuity equations. Despite simplifications used in the turbulence description, the model allowed obtaining the spatial steady-state distribution of the averaged wind velocities and coefficients of turbulent exchange within the atmospheric surface layer, taking into account the surface heterogeneity. The spatial pattern of CO2 fluxes within and above a plant canopy is derived using the “diffusion–reaction–advection” equation. The model was applied to estimate the spatial heterogeneity of CO2 fluxes over a non-uniform boreal ombrotrophic peatland, Staroselsky Moch, in the Tver region of European Russia. The modeling results showed a significant effect of vegetation heterogeneity on the spatial pattern of vertical and horizontal wind components and on vertical and horizontal CO2 flux distributions. Maximal airflow disturbances were detected in the near-surface layer at the windward and leeward forest edges. The forest edges were also characterized by maximum rates of horizontal CO2 fluxes. Modeled turbulent CO2 fluxes were compared with the mid-day eddy covariance flux measurements in the southern part of the peatland. A very good agreement of modeled and measured fluxes (R2 = 0.86, p < 0.05) was found. Comparisons of the vertical profiles of CO2 fluxes over the entire peatland area and at the flux tower location showed significant differences between these fluxes, depending on the prevailing wind direction and the height above the ground.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.