A new esterase gene from thermophilic bacteria Ureibacillus thermosphaericus was cloned into the pET32b vector and expressed in Escherichia coli BL21(DE3). Alignment of the estUT1 amino acid sequence revealed the presence of a novel canonical pentapeptide (GVSLG) and 41-47% identity to the closest family of the bacterial lipases XIII. Thus the esterase estUT1 from U. thermosphaericus was assigned as a member of the novel family XVIII. It also showed a strong activity toward short-chain esters (C2-C8), with the highest activity for C2. When p-nitrophenyl butyrate is used as a substrate, the temperature and pH optimum of the enzyme were 70-80 °C and 8.0, respectively. EstUT1 showed high thermostability and 68.9 ± 2.5% residual activity after incubation at 70 °C for 6 h. Homology modeling of the enzyme structure showed the presence of a putative catalytic triad Ser93, Asp192, and His222. The activity of estUT1 was inhibited by PMSF, suggesting that the serine residue is involved in the catalytic activity of the enzyme. The purified enzyme exhibited high stability in organic solvents. EstUT1 retained 85.8 ± 2.4% residual activity in 30% methanol at 50 °C for 6 h. Stability at high temperature and tolerance to organic solvents make estUT1 a promising enzyme for biotechnology application.
In this study, a combination of catalytic and biotechnological processes was proposed for the first time for application in a cellulose biorefinery for the production of 5-hydroxymethylfurfural (5-HMF) and bioethanol. Hydrolytic dehydration of the mechanically activated microcrystalline cellulose over a carbon-based mesoporous Sibunt-4 catalyst resulted in moderate yields of glucose and 5-HMF (21.1-25.1 and 6.6-9.4 %). 5-HMF was extracted from the resulting mixture with isobutanol and subjected to ethanol fermentation. A number of yeast strains were isolated that also revealed high thermotolerance (up to 50 °C) and resistance to inhibitors found in the hydrolysates. The strains Kluyveromyces marxianus C1 and Ogataea polymorpha CBS4732 were capable of producing ethanol from processed catalytic hydrolysates of cellulose at 42 °C, with yields of 72.0±5.7 and 75.2±4.3 % from the maximum theoretical yield of ethanol, respectively.
In this study, the active and stable cross-linked enzyme aggregates (CLEAs) of the thermostable esterase estUT1 of the bacterium Ureibacillus thermosphaericus were prepared for application in malathion removal from municipal wastewater. Co-expression of esterase with an E. coli chaperone team (KJE, ClpB, and ELS) increased the activity of the soluble enzyme fraction up to 200.7 ± 15.5 U mg−1. Response surface methodology (RSM) was used to optimize the preparation of the CLEA-estUT1 biocatalyst to maximize its activity and minimize enzyme loss. CLEA-estUT1 with the highest activity of 29.4 ± 0.5 U mg−1 (90.6 ± 2.7% of the recovered activity) was prepared with 65.1% (w/v) ammonium sulfate, 120.6 mM glutaraldehyde, and 0.2 mM bovine serum albumin at 5.1 h of cross-linking. The biocatalyst has maximal activity at 80 °С and pH 8.0. Analysis of the properties of CLEA-estUT1 and free enzyme at 50–80 °C and pH 5.0–10.0 showed higher stability of the biocatalyst. CLEA-estUT1 showed marked tolerance against a number of chemicals and high operational stability and activity in the reaction of malathion hydrolysis in wastewater (up to 99.5 ± 1.4%). After 25 cycles of malathion hydrolysis at 37 °С, it retained 55.2 ± 1.1% of the initial activity. The high stability and reusability of CLEA-estUT1 make it applicable for the degradation of insecticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.