Under the influence of gun barrel design, materials, and propellant, improving pirojectile muzzle velocity is the bottleneck in gun development. An innovative method based on magnetically confined plasma theory was therefore proposed to improve the projectile muzzle velocity. Compared with the traditional methods for increasing the projectile muzzle velocity, the method proposed in this study has a simpler design structure, a broad applicability to different caliber guns with lower cost, and an obvious effect on improving muzzle velocity. The core idea was to use the magnetic field to constrain the plasma generated by gunpowder combustion ionization in the gun bore to increase the projectile bottom pressure, thereby increasing the projectile muzzle velocity. First, the mechanism of increasing the projectile muzzle velocity by magnetically confined plasma in the gun barrel was analyzed. Second, a new gunpowder gas thermal ionization model was established based on interior ballistic and plasma theories. The fourth-order Runge-Kutta algorithm was used to numerically simulate the changes in plasma density and conductivity during the combustion ionization of gunpowder. The effects of different ionized seed contents and propellant forces on the density and conductivity of plasma were numerically simulated to improve the ionization efficiency of gunpowder. Adding ionized seeds or propellant force improves the ionization efficiency of gunpowder, increases the binding force of the magnetic field on plasma, and enhances the projectile muzzle velocity. Finally, shooting tests were performed with a test barrel. Experimental results verified the correctness of the theoretical analysis and numerical simulation.INDEX TERMS Magnetically confined plasma, projectile muzzle velocity, projectile bottom pressure, thermal ionization model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.