Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline–valine–aspartic acid–difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1–mediated interleukin-1β (IL-1β) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1β, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.
C‐C motif chemokine receptor 2 (CCR2) is an important mediator of myeloid cell chemotaxis during inflammation and infection. Myeloid cells such as monocytes, macrophages, and neutrophils contribute to host defense during orthopedic implant‐associated infections (OIAI), but whether CCR2‐mediated chemotaxis is involved remains unclear. Therefore, a Staphylococcus aureus OIAI model was performed by surgically placing an orthopedic‐grade titanium implant and inoculating a bioluminescent S. aureus strain in knee joints of wildtype (wt) and CCR2‐deficient mice. In vivo bioluminescent signals significantly increased in CCR2‐deficient mice compared with wt mice at later time points (Days 14–28), which was confirmed with ex vivo colony‐forming unit enumeration. S. aureus γ‐hemolysin utilizes CCR2 to induce host cell lysis. However, there were no differences in bacterial burden when the OIAI model was performed with a parental versus a mutant γ‐hemolysin‐deficient S. aureus strain, indicating that the protection was mediated by the host cell function of CCR2 rather than γ‐hemolysin virulence. Although CCR2‐deficient and wt mice had similar cellular infiltrates in the infected joint tissue, CCR2‐deficient mice had reduced myeloid cells and γδ T cells in the draining lymph nodes. Taken together, CCR2 contributed to host defense at later time points during an OIAI by increasing immune cell infiltrates in the draining lymph nodes, which likely contained the infection and prevented invasive spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.