The culture of bone marrow derived mesenchymal stem cells (MSCs), as well as the control of its differentiation toward different tissue lineage, is a very important part of tissue engineering, where cells are combined with artificial scaffold to regenerate tissues. Graphene (G) and graphene oxide (GO) sheets are soft membranes with high in-plane stiffness and can potentially serve as a biocompatible, transferable, and implantable platform for stem cell culture. While the healthy proliferation of stem cells on various carbon platforms has been demonstrated, the chemical role of G and GO, if any, in guiding uncommitted stem cells toward differentiated cells is not known. Herein, we report that the strong noncovalent binding abilities of G allow it to act as a preconcentration platform for osteogenic inducers, which accelerate MSCs growing on it toward the osteogenic lineage. The molecular origin of accelerated differentation is investigated by studying the binding abilities of G and GO toward different growth agents. Interestingly, differentiation to adipocytes is greatly suppressed on G because insulin, which is a key regulator for the synthesis of fatty acids, is denatured upon π-π adsorption on G; in contrast, GO does not interfere with adipogenesis due to electrostatic binding with insulin. The different binding interactions and their subsequent influence on stem cell growth and differentiation are ascribed to different degrees of π-π stacking and electrostatic and hydrogen bonding mediated by G and GO.
Surface engineering of substrates offers the possibility of controlling the physiological functions of cells at the molecular level. Fluorinated graphene promotes the differentiation of MSCs towards neuronal lineages. Cell alignment using printed polydimethylsiloxane channel arrays on fluorinated graphene further enhances the neuro-induction of MSCs even in the absence of chemical inducers.
IgG4-RD is a systemic inflammatory and sclerosing disease. Parotid and lacrimal involvement (formerly called Mikulicz's disease), lymphadenopathy and pancreatitis are the most common manifestations. Patients with IgG4-RD showed favourable responses to treatment with glucocorticoids and immunosuppressive agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.