SgK269/PEAK1 is a pseudokinase and scaffolding protein that plays a critical role in regulating growth factor receptor signal output and is implicated in the progression of several cancers, including those of the breast, colon, and pancreas. SgK269 is structurally related to SgK223, a human pseudokinase that also functions as a scaffold but recruits a distinct repertoire of signaling proteins compared with SgK269. Structural similarities between SgK269 and SgK223 include a predicted ␣-helical region (designated CH) immediately preceding the conserved C-terminal pseudokinase (PK) domain. Structure-function analyses of SgK269 in MCF-10A mammary epithelial cells demonstrated a critical role for the CH and PK regions in promoting cell migration and Stat3 activation. Characterization of the SgK269 "interactome" by mass spectrometry-based proteomics identified SgK223 as a novel binding partner, and association of SgK269 with SgK223 in cells was dependent on the presence of the CH and PK domains of both pseudokinases. Homotypic association of SgK269 and SgK223 was also demonstrated and exhibited the same structural requirements. Further analysis using pulldowns and size-exclusion chromatography underscored the critical role of the CH region in SgK269/SgK223 association. Importantly, although SgK269 bridged SgK223 to Grb2, it was unable to activate Stat3 or efficiently enhance migration in SgK223 knock-out cells generated by CRISPR/Cas9. These results reveal previously unrecognized interplay between two oncogenic scaffolds and demonstrate a novel signaling mechanism for pseudokinases whereby homotypic and heterotypic association is used to assemble scaffolding complexes with distinct binding properties and hence qualitatively regulate signal output.
BackgroundCharacterization of molecular mechanisms underpinning development of pancreatic ductal adenocarcinoma (PDAC) may lead to the identification of novel therapeutic targets and biomarkers. SgK223, also known as Pragmin, is a pseudokinase and scaffolding protein closely related to SgK269/PEAK1. Both proteins are implicated in oncogenic tyrosine kinase signaling, but their mechanisms and function remain poorly characterized.MethodsExpression of SgK223 in PDAC and PDAC cell lines was characterized using gene expression microarrays, mass spectrometry (MS)-based phosphoproteomics and Western blotting. SgK223 was overexpressed in human pancreatic ductal epithelial (HPDE) cells via retroviral transduction, and knocked down in PDAC cells using siRNA. Cell proliferation was determined using a colorimetric cell viability assay, and cell migration and invasion using transwells. Expression of markers of epithelial-mesenchyme transition (EMT) was assayed by quantitative PCR. SgK223 and Stat3 signaling was interrogated by immunoprecipitation, Western blot and gene reporter assays. The functional role of specific kinases and Stat3 was determined using selective small molecule inhibitors.ResultsElevated site-selective tyrosine phosphorylation of SgK223 was identified in subsets of PDAC cell lines, and increased expression of SgK223 detected in several PDAC cell lines compared to human pancreatic ductal epithelial (HPDE) cells and in PDACs compared to normal pancreas. Expression of SgK223 in HPDE cells at levels comparable to those in PDAC did not alter cell proliferation but led to a more elongated morphology, enhanced migration and invasion and induced gene expression changes characteristic of a partial EMT. While SgK223 overexpression did not affect activation of Erk or Akt, it led to increased Stat3 Tyr705 phosphorylation and Stat3 transcriptional activity, and SgK223 and Stat3 associated in vivo. SgK223-overexpressing cells exhibited increased JAK1 activation, and use of selective inhibitors determined that the increased Stat3 signaling driven by SgK223 was JAK-dependent. Pharmacological inhibition of Stat3 revealed that Stat3 activation was required for the enhanced motility and invasion of SgK223-overexpressing cells.ConclusionsIncreased expression of SgK223 occurs in PDAC, and overexpression of SgK223 in pancreatic ductal epithelial cells promotes acquisition of a migratory and invasive phenotype through enhanced JAK1/Stat3 signaling. This represents the first association of SgK223 with a particular human cancer, and links SgK223 with a major signaling pathway strongly implicated in PDAC progression.
IntroductionThe study of mammalian development has offered many insights into the molecular aetiology of cancer. We previously used analysis of mammary morphogenesis to discover a critical role for GATA-3 in mammary developmental and carcinogenesis. In recent years an important role for microRNAs (miRNAs) in a myriad of cellular processes in development and in oncogenesis has emerged.MethodsmicroRNA profiling was conducted on stromal and epithelial cellular subsets microdissected from the pubertal mouse mammary gland. miR-184 was reactivated by transient or stable overexpression in breast cancer cell lines and examined using a series of in vitro (proliferation, tumour-sphere and protein synthesis) assays. Orthotopic xenografts of breast cancer cells were used to assess the effect of miR-184 on tumourigenesis as well as distant metastasis. Interactions between miR-184 and its putative targets were assessed by quantitative PCR, microarray, bioinformatics and 3′ untranslated region Luciferase reporter assay. The methylation status of primary patient samples was determined by MBD-Cap sequencing. Lastly, the clinical prognostic significance of miR-184 putative targets was assessed using publicly available datasets.ResultsA large number of microRNA were restricted in their expression to specific tissue subsets. MicroRNA-184 (miR-184) was exclusively expressed in epithelial cells and markedly upregulated during differentiation of the proliferative, invasive cells of the pubertal terminal end bud (TEB) into ductal epithelial cells in vivo. miR-184 expression was silenced in mouse tumour models compared to non-transformed epithelium and in a majority of breast cancer cell line models. Ectopic reactivation of miR-184 inhibited the proliferation and self-renewal of triple negative breast cancer (TNBC) cell lines in vitro and delayed primary tumour formation and reduced metastatic burden in vivo. Gene expression studies uncovered multi-factorial regulation of genes in the AKT/mTORC1 pathway by miR-184. In clinical breast cancer tissues, expression of miR-184 is lost in primary TNBCs while the miR-184 promoter is methylated in a subset of lymph node metastases from TNBC patients.ConclusionsThese studies elucidate a new layer of regulation in the PI3K/AKT/mTOR pathway with relevance to mammary development and tumour progression and identify miR-184 as a putative breast tumour suppressor.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-015-0593-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.