The paper describes fluidic networks consisting of individually controlled branches. The networks' basic building blocks are conduits equipped with two electrodes positioned on opposing walls. The entire device is either subjected to an external uniform magnetic field or fabricated within a magnetic material. When a prescribed potential difference is applied across each electrode pair, it induces current in the liquid (assumed to be at least a weak electrolyte solution). Analogously with electric circuits, by judicious application of the potential differences at various branches, one can direct liquid flow in any desired way without a need for mechanical pumps or valves.Equipped with additional, internally located electrodes, the network branches double as stirrers capable of generating chaotic advection. The paper describes the basic building blocks for such a network, the operation of these branches as stirrers, a general linear graph-based theory for the analysis and optimal control of fluidic magneto-hydrodynamic networks, an example of a network fabricated with low temperature, co-fired ceramic tapes, and preliminary experimental observations that illustrate that the ideas described in this paper can, indeed, be implemented in practice.
Adolescent idiopathic scoliosis is the most common spinal disorder in adolescents with a prevalence of 0.5–5.2% worldwide. The traditional methods for scoliosis screening are easily accessible but require unnecessary referrals and radiography exposure due to their low positive predictive values. The application of deep learning algorithms has the potential to reduce unnecessary referrals and costs in scoliosis screening. Here, we developed and validated deep learning algorithms for automated scoliosis screening using unclothed back images. The accuracies of the algorithms were superior to those of human specialists in detecting scoliosis, detecting cases with a curve ≥20°, and severity grading for both binary classifications and the four-class classification. Our approach can be potentially applied in routine scoliosis screening and periodic follow-ups of pretreatment cases without radiation exposure.
To explore the interventional effect of exercise therapy on idiopathic scoliosis and identify an optimal intervention window, we did a prospective controlled cohort study. The results shows the efficacy of our exercise protocol, and younger patients with a lower Risser grade are most likely to respond.
Background Neutrophil extracellular traps (NETs) are released when neutrophils encounter infectious pathogens, especially during sepsis. Additionally, NETosis occurs during venous and arterial thrombosis, disseminated intravascular coagulation, and trauma. Objective To determine whether hemodynamic forces trigger NETosis during sterile thrombosis. Methods NETs were imaged with Sytox Green during microfluidic perfusion of activated factor XII-inhibited or thrombin-inhibited human whole blood over fibrillar collagen (with or without tissue factor). Results For perfusions at initial inlet venous or arterial wall shear rates (100 s or 1000 s ), platelets rapidly accumulated and occluded microchannels with subsequent neutrophil infiltration under either flow condition; however, NETosis was detected only in the arterial condition. The level of shear-induced NETs (SINs) at 30 min was > 150-fold higher in the arterial condition in the absence of thrombin and > 80-fold greater in the presence of thrombin than the level in the venous condition. With or without thrombin, venous perfusion for 15 min generated no NETs, but an abrupt shift-up to arterial perfusion triggered NETosis within 2 min, NETs eventually reaching levels 15 min later that were 60-fold greater than that in microchannels without perfusion shift-up. SINs contained citrullinated histone H3 and myeloperoxidase, and were DNase-sensitive, but were not blocked by inhibitors of platelet-neutrophil adhesion, high-mobility group protein box 1-receptor for advanced glycation end products interaction, cyclooxygenase, ATP/ADP, or peptidylarginine deiminase 4. For measured pressure gradients exceeding 70 mmHg per millimeter of clot across NET-generating occlusions to drive interstitial flow, the calculated fluid shear stress on neutrophils exceeded the known lytic value of 150 dyne cm . Conclusions High interstitial hemodynamic forces can drive physically entrapped neutrophils to rapidly release NETs during sterile occlusive thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.