Learning the distance metric between pairs of examples is of great importance for learning and visual recognition. With the remarkable success from the state of the art convolutional neural networks, recent works [1, 31] have shown promising results on discriminatively training the networks to learn semantic feature embeddings where similar examples are mapped close to each other and dissimilar examples are mapped farther apart. In this paper, we describe an algorithm for taking full advantage of the training batches in the neural network training by lifting the vector of pairwise distances within the batch to the matrix of pairwise distances. This step enables the algorithm to learn the state of the art feature embedding by optimizing a novel structured prediction objective on the lifted problem. Additionally, we collected Online Products dataset: 120k images of 23k classes of online products for metric learning. Our experiments on the CUB-200-2011 [37], CARS196 [19], and Online Products datasets demonstrate significant improvement over existing deep feature embedding methods on all experimented embedding sizes with the GoogLeNet [33] network.
Estimating 6D poses of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Given an initial pose estimation, our network is able to iteratively refine the pose by matching the rendered image against the observed image. The network is trained to predict a relative pose transformation using a disentangled representation of 3D location and 3D orientation and an iterative training process. Experiments on two commonly used benchmarks for 6D pose estimation demonstrate that DeepIM achieves large improvements over stateof-the-art methods. We furthermore show that DeepIM is able to match previously unseen objects.
Online Multi-Object Tracking (MOT) has wide applications in time-critical video analysis scenarios, such as robot navigation and autonomous driving. In trackingby-detection, a major challenge of online MOT is how to robustly associate noisy object detections on a new video frame with previously tracked objects. In this work, we formulate the online MOT problem as decision making in Markov Decision Processes (MDPs), where the lifetime of an object is modeled with a MDP. Learning a similarity function for data association is equivalent to learning a policy for the MDP, and the policy learning is approached in a reinforcement learning fashion which benefits from both advantages of offline-learning and online-learning for data association. Moreover, our framework can naturally handle the birth/death and appearance/disappearance of targets by treating them as state transitions in the MDP while leveraging existing online single object tracking methods. We conduct experiments on the MOT Benchmark [24] to verify the effectiveness of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.