Research design. Finite element analysis based on computed tomography images from the lumbar spine. Objective. Determined the pullout strength of unsatisfactorily placed screws and repositioned screws after unsatisfactory place in lumbar spine surgery. Background. Pedicle screws are widely used to stabilize the spinal vertebral body. Unsatisfactory screws could lead to surgical complications, and may need to be repositioned. Screw removal and reposition, however, may decrease pullout strength. Methods. We conducted a three-dimensional finite element analysis based on high-resolution computed tomography images from a 39-year-old healthy woman. Pullout strength was determined with the screw placed in different orientations at the same entry point (as selected by the Magerl method), as well as after removal and reposition. The material properties of the vertebral body and the screw were simulated by using grayscale values and verified data, respectively. A load along the screw axis was applied to the end of the screw to simulate the pullout. Results. The pullout strength was 1840.0 N with the Magerl method. For unsatisfactorily placed screws, the pullout strength was 1500.8 N at 20% overlap, 1609.6 N at 40% overlap, 1628.9 N at 60% overlap, and 1734.7 N at 80% overlap with the hypothetical screw path of the Magerl method. For repositioned screws, the pullout strength was 1763.6 N, with 20% overlap, 1728.3 N at 40% overlap, 1544.0 N at 60% overlap, and 1491.1 N at 80% overlap, with the original path. Comparison of repositioned screw with unsatisfactorily placed screw showed 14.04% decrease in pullout strength at 80% overlap, 5.21% decrease at 60% overlap, 7.37% increase at 40% overlap, and 17.51% increase at 20% overlap, with the screw path of the Magerl method. Conclusions. Removal and reposition increased the pullout strength at 20% and 40% overlap, but decreased the pullout strength at 60% and 80% overlap. For clinical translation, we recommend removal and reposition of the screw when the overlap is in the range of 20% to 40% or less. In vitro specimen studies are needed to verify these preliminary findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.