Aiming at the problem of coal face failure of lower coal seam under the influence of repeated mining in close coal seams, with the working face 17,101 as a background, the coal samples mechanics test clarified the strength characteristics of the coal face under repeated mining, through similar simulation experiments, the development of stable roof structure and surrounding rock cracks under repeated mining of close coal seams are further explored. And based on this, establish a coal face failure mechanics model to comprehensively analyze the influence of multiple roof structural instabilities on the stability of the coal face. Finally, numerical simulation is used to further supplement and verify the completeness and rationality of similar simulation experiment and theoretical analysis results. The results show that: affected by repeated mining disturbances, the cracks in the coal face are relatively developed, the strength of the coal body is reduced, and the coal face is more prone to failure under the same roof pressure; During the mining of coal seam 17#, the roofs of different layers above the stope form two kinds of "arch" structures and one kind of “voussoir beam” structure, and there are three different degrees of frequent roof pressure phenomenon, which is easy to cause coal face failure; Under repeated mining of close coal seams, the roof pressure acting on the coal face is not large. The main controlling factor of coal face failure is the strength of the coal body, and the form of coal face failure is mostly the shear failure of soft coal. The research results can provide a theoretical basis for coal face failure under similar conditions.
Roof accidents seriously affect the safe and efficient mining of the working faces. Therefore, it is necessary to assess and identify the possible and influencing factors on the occurrence of roof risk in a fully mechanized mining workface. In this study, based on the analytic hierarchy process and fuzzy comprehensive evaluation, a comprehensive standard cloud model was established through constructing a quantitative grade interval and calculating the weight of each index to achieve the aim of a roof risk assessment and identification. The accuracy of risk assessment was ensured by using the comprehensive analyses of various aspects, such as cloud digital features, risk assessment cloud image and standard cloud image. This showed that the main influencing factors on the occurrence of roof accidents were roof separation distance, weighting intensity and rib spalling followed by the coal body stress concentration, initial support force and geological conditions. Taking 42,115 fully mechanized working faces in the Yushen coal mining area as an engineering background, this model was adopted to assess and identify the risk of roof accidents through generating comprehensive assessment cloud images and introducing the Dice coefficient to calculate the similarity degree. The results showed that the overall risk of roof accidents in 42,115 working faces was regarded as grade II (general risk) through the overall index of comprehensive risk evaluation and a similarity degree of 0.8606. The impact of roof condition was mainly influenced by the risk of roof accidents, while the support status, personal working status and coal body condition had a limited effect on the risk of roof accidents. The comprehensive standard cloud model proposed in this study had strong visibility and discovered the key parts of risk indexes easily to solve the problems of ambiguity and quantitative identification in traditional roof risk evaluation methods. Therefore, this model was worth promoting, because it laid the foundation for the intelligent identification and early warning system of roof accident risk in a fully mechanized mining workface.
In order to solve the problems of roadway stability and easy instability under repeated mining of close-distance coal seam groups, the mechanism and control technology of surrounding rock instability under repeated mining were studied via indoor testing, field testing, physical similarity simulation experiment, and numerical simulation. The results show that the surrounding rock of roadway has low strength, low bearing capacity, and poor self-stabilization ability, and it is vulnerable to engineering disturbances and fragmentation. Affected by the disturbance under repeated mining, the roadway surrounding rock cracks are developed and the sensitivity is strong, and it is prone to large-scale loose and destroyed. The location of the roadway is unreasonable, and the maximum principal stress of the roadway is 3.1 times of the minimum principal stress, which is quite different. Thus, under a large horizontal stress, the surrounding rock undergoes long-range expansion deformation. On the basis of this research, the direction and emphasis of stability control of roadway surrounding rock under repeated mining of coal seam groups in close-distance are shown. A repair scheme (i.e., long bolt + high-strength anchor cable + U-shaped steel + grouting) is proposed, and reduces the risk of roadway instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.