Artificial oxygen carriers, favorably hemoglobin-based oxygen carriers (HBOCs), are being investigated intensively during the last 30 years with the aim to develop a universal blood substitute. However, serious side effects mainly caused by vasoconstriction triggered by nitric oxide (NO) scavenging due to penetration of nanosized HBOCs through the endothelial gaps of the capillary walls and/or oxygen oversupply in the precapillary arterioles due to their low oxygen affinity led to failure of clinical trials and FDA disapproval. To avoid these effects, HBOCs with a size between 100 and 1000 nm and high oxygen affinity are needed. Here we present for the first time unique hemoglobin particles (HbPs) of around 700 nm with high oxygen affinity and low immunogenicity using a novel, highly effective, and simple technique. The fabrication procedure provides particles with a narrow size distribution and nearly uniform morphology. The content of hemoglobin (Hb) in the particles corresponded to 80% of the Hb content in native erythrocytes. Furthermore, we demonstrate a successful perfusion of isolated mouse glomeruli with concentrated HbP suspensions in vitro. A normal, nonvasoconstrictive behavior of the afferent arterioles is observed, suggesting no oxygen oversupply and limited NO scavenging by these particles, making them a highly promising blood substitute.
Bovine hemoglobin microparticles (Hb-MPs) as suitable oxygen carriers are fabricated easily by three key steps: coprecipitation of Hb and CaCO(3) to make Hb-CaCO(3)-microparticles (Hb-CaCO(3)-MPs), cross-linking by glutaraldehyde (GA) to polymerize the Hb and dissolution of CaCO(3) template to obtain pure Hb-MPs. The Hb entrapment efficiency ranged from 8 to 50% corresponding to a hemoglobin quantity per Hb-MP of at least one-third of that in one erythrocyte. The Hb-MPs are spherical, with an average diameter of 3.2 μm and high oxygen affinity. The methemoglobin level was increased after preparation, but can be reduced to less than 7% with ascorbic acid. Phagocytosis assays showed low immunogenicity of Hb-MPs if the particles were cross-linked with low concentration of GA and treated with sodium borohydride. Magnetite-loaded Hb-MPs circulated up to 4 days after intravenous application.
During the last 30 years, artificial oxygen carriers have been investigated intensively with the aim to develop universal blood substitutes. Favorably, hemoglobin-based oxygen carriers (HBOCs) are expected to meet the sophisticated requirements. However, the HBOCs tested until now show serious side effects, which resulted in failure of clinical trials and Food and Drug Administration disapproval. The main problem consists in vasoconstriction triggered by nitric oxide (NO) scavenging or/and oxygen oversupply in the pre-capillary arterioles. HBOCs with a size between 100 nm and 1 µm and high oxygen affinity are needed. Here we present a highly effective and simple fabrication procedure, which can provide hemoglobin particles (HbPs) with a narrow size distribution of around 700 nm, nearly uniform morphology, high oxygen affinity, and low immunogenicity. Isolated mouse glomeruli are successfully perfused with concentrated HbP suspensions without any observable vasoconstriction of the afferent arterioles. The results suggest no oxygen oversupply and limited NO scavenging by these particles, featuring them as a highly promising blood substitute.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.