Endocytic recycling of internalized transmembrane proteins is essential for many important physiological processes. Recent studies have revealed that retromer-related Sorting Nexin family (SNX)-Bin/Amphiphysin/Rvs (BAR) proteins can directly recognize cargoes like cation-independent mannose 6-phosphate receptor (CI-MPR) and Insulin-like growth factor 1 receptor (IGF1R); however, it remains poorly understood how SNX-BARs select specific cargo proteins and whether they recognize additional ligands. Here, we discovered that the binding between SNX-BARs and CI-MPR or IGF1R is mediated by the phox-homology (PX) domain of SNX5 or SNX6 and a bipartite motif, termed SNX-BAR-binding motif (SBM), in the cargoes. Using this motif, we identified over 70 putative SNX-BAR ligands, many of which play critical roles in apoptosis, cell adhesion, signal transduction, or metabolite homeostasis. Remarkably, SNX-BARs could cooperate with both SNX27 and retromer in the recycling of ligands encompassing the SBM, PDZ-binding motif, or both motifs. Overall, our studies establish that SNX-BARs function as a direct cargo-selecting module for a large set of transmembrane proteins transiting the endosome, in addition to their roles in phospholipid recognition and biogenesis of tubular structures.have been linked with a variety of human diseases including Alzheimer's disease, Parkinson's disease, cancer, and diabetes [4,5].Key protein machineries important for the sequence-dependent recycling include the evolutionarily conserved retromer complex (vacuolar protein sorting 35 [VPS35]/VPS26/VPS29 in higher eukaryotes) [6][7][8], the recently discovered retriever [9], the WASH complex [10][11][12], and members of the Sorting Nexin family (SNX) [13][14][15]. A subset of SNX proteins possessing a Bin/Amphiphysin/Rvs (BAR) domain, in addition to the phox-homology (PX) domain, have been linked with the retromer complex. The retromer-related SNX-BAR proteins (referred as SNX-BARs herein) SNX1, SNX2, SNX5, SNX6, and SNX32 form heterodimeric complexes and are critical for both endosome-to-plasma membrane recycling and endosome-to-TGN retrieval [16,17]. Current models suggest that SNX-BARs promote the endosome-to-plasma membrane recycling via associating with SNX27 and retromer, with the PDZ domain of SNX27 as the predominant cargo-recognition module [14]. For endosome-to-TGN trafficking, one of the best-characterized cargoes is cation-independent mannose 6-phosphate receptor (CI-MPR), which is necessary to deliver newly synthesized lysosomal hydrolases to the endosomal lumen and thus critical for lysosomal function [18]. However, previous studies have provided contradictory models regarding the role of retromer and SNX-BARs in the endosome-to-TGN retrieval of CI-MPR. Work from many different labs has initially supported the idea that retromer is necessary for the retrieval of CI-MPR, likely through a direct association with its cytoplasmic tail, in particular, the hydrophobic WLM motif [19][20][21]. However, recent work by Cullen and Steinberg has provi...
Two hundred and six strains of avian infectious bronchitis virus (IBV) were isolated from chickens showing signs of disease in southern China during the period from 2013–2015. The nucleotide and amino acid sequences from the isolated field strains were compared to 42 published references. Nucleotide homologies ranged from 63.1–99.9% and amino acid homologies ranging from 60.2–100%. At least seven IBV genotypes were co-circulating in commercial chicken farms in southern China. The IBV isolates were genetically diverse and underwent continuing evolution. The QX-type, TW I-type, and 4/91-type were the most common genotypes during the three-year observation period and accounted for 88.8% of the isolated strains. Notably, the prevalence of the TW I-type strains has been increasing in recent years and has become the most common genotype in China. The emergence of variant IBV strains can be attributed to recombination. Serologic analysis and antigenic 3D cartography of 4 reference and 14 field isolated strains indicated the surveyed IBVs had diverse serology types and that the serotype of the isolated QX-type and TW I-type strains was distinct from the vaccines strains. Therefore, long-term continuing surveillance is necessary for IBV prevention and control.
Chaperone-mediated autophagy (CMA) is a lysosome-dependent selective degradation pathway implicated in the pathogenesis of cancer and neurodegenerative diseases. However, the mechanisms that regulate CMA are not fully understood. Here, using unbiased drug screening approaches, we discover Metformin, a drug that is commonly the first medication prescribed for type 2 diabetes, can induce CMA. We delineate the mechanism of CMA induction by Metformin to be via activation of TAK1-IKKα/β signaling that leads to phosphorylation of Ser85 of the key mediator of CMA, Hsc70, and its activation. Notably, we find that amyloid-beta precursor protein (APP) is a CMA substrate and that it binds to Hsc70 in an IKKα/β-dependent manner. The inhibition of CMA-mediated degradation of APP enhances its cytotoxicity. Importantly, we find that in the APP/PS1 mouse model of Alzheimer’s disease (AD), activation of CMA by Hsc70 overexpression or Metformin potently reduces the accumulated brain Aβ plaque levels and reverses the molecular and behavioral AD phenotypes. Our study elucidates a novel mechanism of CMA regulation via Metformin-TAK1-IKKα/β-Hsc70 signaling and suggests Metformin as a new activator of CMA for diseases, such as AD, where such therapeutic intervention could be beneficial.
In this study, we attenuated a Chinese QX-like nephropathogenic infectious bronchitis virus (IBV) strain, YX10, by passaging through fertilized chicken eggs. The 90th passage strain (YX10p90) was selected as the live-attenuated vaccine candidate strain. YX10p90 was found to be safe in 7-day-old specific pathogen free chickens without induction of morbidity or mortality. YX10p90 provided nearly complete protection against QX-like (CH I genotype) strains and partial protection against other two major Chinese genotype strains. YX10p90 also showed no reversion to virulence after five back passages in chickens. An IBV polyvalent vaccine containing YX10p90 was developed and showed that it could provide better protection against major Chinese IBV virulent strains than commercial polyvalent vaccines. In addition, the complete genome sequence of YX10p90 was sequenced. Multiple-sequence alignments identified 38 nucleotide substitutions in the whole genome which resulted in 26 amino acid substitutions and a 110-bp deletion in the 3' untranslated region. In conclusion, the attenuated YX10p90 strain exhibited a fine balance between attenuation and immunogenicity, and should be considered as a candidate vaccine to prevent infection of Chinese QX-like nephropathogenic IBV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.