Objective/Method
Aggrecanase activity, most notably ADAMTS-5, is implicated in pathogenic cartilage degradation. Selective monoclonal antibodies (mAbs) to both ADAMTS-5 and ADAMTS-4 were generated and in vitro, ex vivo and in vivo systems were utilized to assess target engagement, aggrecanase inhibition and modulation of disease-related endpoints with the intent of selecting a candidate for clinical development in osteoarthritis (OA).
Results
Structural mapping predicts the most potent mAbs employ a unique mode of inhibition by cross-linking the catalytic and disintegrin domains. In a surgical mouse model of OA, both ADAMTS-5 and ADAMTS-4-specific mAbs penetrate cartilage following systemic administration, demonstrating access to the anticipated site of action. Structural disease modification and associated alleviation of pain-related behavior were observed with ADAMTS-5 mAb treatment. Treatment of human OA cartilage demonstrated a preferential role for ADAMTS-5 inhibition over ADAMTS-4, as measured by ARGS neoepitope release in explant cultures. ADAMTS-5 mAb activity was most evident in a subset of patient-derived tissues and suppression of ARGS neoepitope release was sustained for weeks after a single treatment in human explants and in cynomolgus monkeys, consistent with high affinity target engagement and slow ADAMTS-5 turnover.
Conclusion
This data supports a hypothesis set forth from knockout mouse studies that ADAMTS-5 is the major aggrecanase involved in cartilage degradation and provides a link between a biological pathway and pharmacology which translates to human tissues, non-human primate models and points to a target OA patient population. Therefore, a humanized ADAMTS-5-selective monoclonal antibody (GSK2394002) was progressed as a potential OA disease modifying therapeutic.
Chemical modifications can potentially induce conformational changes near the modification site and thereby impact the safety and efficacy of protein therapeutics. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has emerged as a powerful analytical technique with high spatial resolution and sensitivity in detecting such local conformational changes. In this study, we utilized HDX-MS combined with structural modeling to examine the conformational impact on monoclonal antibodies (mAbs) caused by common chemical modifications including methionine (Met) oxidation, aspartic acid (Asp) isomerization, and asparagine (Asn) deamidation. Four mAbs with diverse sequences and glycosylation states were selected. The data suggested that the impact of Met oxidation was highly dependent on its location and glycosylation state. For mAbs with normal glycosylation in the Fc region, oxidation of the two conserved Met252 and Met428 (Kabat numbering) disrupted the interface interactions between the CH2 and CH3 domains, thus leading to a significant decrease in CH2 domain thermal stability as well as a slight increase in aggregation propensity. In contrast, Met oxidation in the variable region and CH3 domain had no detectable impact on mAb conformation. For aglycosylated mAb, Met oxidation could cause a more global conformational change to the whole CH2 domain, coincident with the larger decrease in thermal stability and significant increase in aggregation rate. Unlike Met oxidation, Asn deamidation and Asp isomerization mostly had very limited effects on mAb conformation, with the exception of succiminide intermediate formation which induced a measurable local conformational change to be more solvent protected. Structural modeling suggested that the succinimide intermediate was stabilized by adjacent aromatic amino acids through ring-ring stacking interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.