BackgroundAedes (Stegomyia) albopictus (Skuse) is an indigenous species and the predominant vector of dengue fever in China. Understanding of genetic diversity and structure of the mosquito would facilitate dengue prevention and vector control. Sympatric cryptic species have been identified in the Ae. albopictus subgroup in Southeast Asia; however, little is known about the presence and distribution of cryptic species in China. This study aimed to examine the genetic diversity, evaluate potential new cryptic sibling species, and assess the prevalence of Wolbachia infections in field populations.MethodsAedes adult female specimens were collected from five provinces in southern and central China during 2015–2016. Morphological identification was performed under dissection microscope. The mitochondrial DNA cytochrome c oxidase subunit 1 (cox1, DNA barcoding) locus and the ribosomal DNA internal transcribed spacer region 2 (ITS2) marker were used to examine the genetic variation, evaluate cryptic sibling species, and population structure in the field populations. Screening for the presence of Wolbachia was performed using multiplex PCR.ResultsA total of 140 individual specimens with morphological characteristics similar to Ae. albopictus were sequenced for DNA barcoding. Among these, 129 specimens (92.1%) were confirmed and identified as Ae. albopictus. The remaining 11 specimens, from 2 provinces, were identified as 2 distinct sequence groups, which were confirmed by ITS2 marker sequencing, suggesting the existence of potential cryptic species of Ae. albopictus. In Ae. albopictus, we found significant genetic differentiation and population structure between populations collected from different climate zones. Medium to high frequencies of Wolbachia infections were observed in natural Ae. albopictus populations, whereas Wolbachia was infrequent or absent in cryptic species populations.ConclusionsOur findings highlight the population differentiation by climate zone and the presence of novel, cryptic Aedes species in China. The low prevalence of Wolbachia infections in cryptic species populations could reflect either a recent invasion of Wolbachia in Ae. albopictus or different host immune responses to this symbiont in the cryptic species. The study provides useful information for vector control and host-symbiont coevolution. Further study is needed to investigate the potential for arbovirus infection and disease transmission in the emerged cryptic species.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2814-8) contains supplementary material, which is available to authorized users.
Purpose Progressive retinal ganglion cell (RGC) loss induced by retinal ischemia/reperfusion (RIR) injury leads to irreversible visual impairment. Pregabalin (PGB) is a promising drug for neurodegenerative diseases. However, with regard to RGC survival, its specific role and exact mechanism after RIR injury remain unclear. In this study, we sought to investigate whether PGB could protect RGCs from mitochondria-related apoptosis induced by RIR and explore the possible mechanisms. Methods C57BL/6J mice and primary RGCs were pretreated with PGB prior to ischemia/reperfusion modeling. The retinal structure and cell morphology were assessed by immunochemical assays and optical coherence tomography. CCK8 was used to assay cell viability, and an electroretinogram was performed to detect RGC function. Mitochondrial damage was assessed by a reactive oxygen species (ROS) assay kit and transmission electron microscopy. Western blot and immunofluorescence assays quantified the expression of proteins associated with the Akt/GSK3β/β-catenin pathway. Results Treatment with PGB increased the viability of RGCs in vitro. Consistently, PGB preserved the normal thickness of the retina, upregulated Bcl-2, reduced the ratio of cleaved caspase-3/caspase-3 and the expression of Bax in vivo. Meanwhile, PGB improved mitochondrial structure and prevented excessive ROS production. Moreover, PGB restored the amplitudes of oscillatory potentials and photopic negative responses following RIR. The mechanisms underlying its neuroprotective effects were attributed to upregulation of the Akt/GSK3β/β-catenin pathway. However, PGB-mediated neuroprotection was suppressed when using MK2206 (an Akt inhibitor), whereas it was preserved when treated with TWS119 (a GSK3β inhibitor). Conclusions PGB exerts a protective effect against RGC apoptosis induced by RIR injury, mediated by the Akt/GSK3β/β-catenin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.