Single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.
Atomically thin molybdenum disulfide (MoS), a direct-band-gap semiconductor, is promising for applications in electronics and optoelectronics, but the scalable synthesis of highly crystalline film remains challenging. Here we report the successful epitaxial growth of a continuous, uniform, highly crystalline monolayer MoS film on hexagonal boron nitride (h-BN) by molecular beam epitaxy. Atomic force microscopy and electron microscopy studies reveal that MoS grown on h-BN primarily consists of two types of nucleation grains (0° aligned and 60° antialigned domains). By adopting a high growth temperature and ultralow precursor flux, the formation of 60° antialigned grains is largely suppressed. The resulting perfectly aligned grains merge seamlessly into a highly crystalline film. Large-scale monolayer MoS film can be grown on a 2 in. h-BN/sapphire wafer, for which surface morphology and Raman mapping confirm good spatial uniformity. Our study represents a significant step in the scalable synthesis of highly crystalline MoS films on atomically flat surfaces and paves the way to large-scale applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.