Background: Bletilla striata is a traditional Chinese medicine used to treat hemorrhage, scald, gastric ulcer, pulmonary diseases and inflammations. In this study, we investigated bioactivity of the effective fraction of B. striata (EFB) in reducing the inflammatory cytokine production induced by water or organic extracts of PM 2.5. Methods: PM 2.5 extracts were collected and analyzed by chromatographic system and inductively coupled plasma mass spectrometer. Cell viability was measured using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, and cell supernatant was analyzed by flow cytometry, ELISA, and qRT-PCR in cultured mouse macrophage cell line RAW264.7 treated with EFB and PM 2.5 extracts. Expressions of nuclear factorkappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway were measured by Western blot. Results: PM 2.5 composition is complex and the toxicity of PM 2.5 extracts were not noticeable. The treatment of EFB at a wide dose-range of 0-40 μg/mL did not cause significant change of RAW264.7 cell proliferation. EFB pretreatment decreased the inflammatory cytokines in the macrophage. Further analysis showed that EFB significantly attenuated PM 2.5-induced proinflammatory protein expression and downregulated the levels of phosphorylated NF-κBp65, inhibitor of kappa B (IκB)-α, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. Conclusions: Our study demonstrated the potential effectiveness of B. striata extracts for treating PM 2.5-triggered pulmonary inflammation.
One of the important monitoring indicators of the air pollution is atmospheric fine particulate matter (PM 2.5 ), which can induce lung inflammation after inhalation. Coelonin can alleviate PM 2.5 -induced macrophage damage through anti-inflammation.However, its molecular mechanism remains unclear. We hypothesized that macrophage damage may involve the release of inflammatory cytokines, activation of inflammatory pathways, and pyrosis induced by inflammasome. In this study, we evaluated the anti-inflammation activity of coelonin in PM 2.5 -induced macrophage and its mechanism of action. Nitric oxide (NO) and reactive oxygen species (ROS) production were measured by NO Assay kit and dichlorofluorescein-diacetate (DCFH-DA), and apoptosis were measured by Flow cytometry and TUNEL staining. The concentration of inflammatory cytokines production was measured with cytometric bead arrays and ELISA kits. The activation of NF-κB signaling pathway and NLRP3 inflammasome were measured by immunofluorescence, quantitative reverse transcription-polymerase chain reaction and western blot. As expected, coelonin pretreatment reduced NO production significantly as well as alleviated cell damage by decreasing ROS and apoptosis. It decreased generation of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in PM 2.5 -induced RAW264.7 and J774A.1 cells. Moreover, coelonin markedly inhibited upregulating the expression of toll-like receptor (TLR)4 and cyclo-oxygenase (COX)-2, blocked activation of p-nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed expression of NLRP3 inflammasome, ASC, GSDMD, IL-18 and IL-1β. In conclusion, the results showed that coelonin could protect against PM 2.5 -induced macrophage damage via suppressing TLR4/NF-κB/ COX-2 signaling pathway and NLRP3 inflammasome activation in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.