Rapid phenotypic changes in traits of adaptive significance are crucial for organisms to thrive in changing environments. How such phenotypic variation is achieved rapidly, despite limited genetic variation in species that experience a genetic bottleneck is unknown.Capsella rubella, an annual and inbreeding forb (Brassicaceae), is a great system for studying this basic question. Its distribution is wider than those of its congeneric species, despite an extreme genetic bottleneck event that severely diminished its genetic variation. Here, we demonstrate that transposable elements (TEs) are an important source of genetic variation that could account for its high phenotypic diversity. TEs are (i) highly enriched inC. rubellacompared with its outcrossing sister speciesCapsella grandiflora, and (ii) 4.2% of polymorphic TEs inC. rubellaare associated with variation in the expression levels of their adjacent genes. Furthermore, we show that frequent TE insertions atFLOWERING LOCUS C (FLC)in natural populations ofC. rubellacould explain 12.5% of the natural variation in flowering time, a key life history trait correlated with fitness and adaptation. In particular, we show that a recent TE insertion at the 3′ UTR ofFLCaffects mRNA stability, which results in reducing its steady-state expression levels, to promote the onset of flowering. Our results highlight that TE insertions can drive rapid phenotypic variation, which could potentially help with adaptation to changing environments in a species with limited standing genetic variation.
In order to enhance the efficiency of radio frequency identification (RFID) and lower system computational complexity, this paper proposes three novel tag anticollision protocols for passive RFID systems. The three proposed protocols are based on a binary tree slotted ALOHA (BTSA) algorithm. In BTSA, tags are randomly assigned to slots of a frame and if some tags collide in a slot, the collided tags in the slot will be resolved by binary tree splitting while the other tags in the subsequent slots will wait. The three protocols utilize a dynamic, an adaptive, and a splitting method to adjust the frame length to a value close to the number of tags, respectively. For BTSA, the identification efficiency can achieve an optimal value only when the frame length is close to the number of tags. Therefore, the proposed protocols efficiency is close to the optimal value. The advantages of the protocols are that, they do not need the estimation of the number of tags, and their efficiency is not affected by the variance of the number of tags. Computer simulation results show that splitting BTSA's efficiency can achieve 0.425, and the other two protocols efficiencies are about 0.40. Also, the results show that the protocols efficiency curves are nearly horizontal when the number of tags increases from 20 to 4,000.Index Terms-RFID, anticollision, ALOHA, estimation of the number of tags, passive Ç
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.