Gas injection and water injection are common and effective methods to improve oil recovery. To ensure its production effect, it is necessary to simulate the oilfield production process. However, traditional composition simulation runs a large number of calculations and takes a long time. Through the analysis of relevant data, we found that production is affected by many factors and has a strong sequential character. Therefore, this paper proposes a deep learning model for reservoir production prediction based on stacked long short-term memory network (LSTM). It is applied to other well patterns with a short production time and a few samples in the same oilfield block by transfer learning. The model achieves an effective combination with the actual reservoir production process. At the same time, it uses the knowledge learned from the well pattern with sufficient historical data to assist in the establishment of the model of the well pattern with limited data. This can obtain accurate prediction results and save the model training time, thus getting more effective application effects than composition simulation. This paper verifies the effectiveness of the proposed method through the data and multiple different injection combinations of the Tarim oilfield.
Oil saturation is a kind of spatiotemporal sequence that changes dynamically with time, and it is affected not only by the reservoir properties, but also by the injection–production parameters. When predicting oil saturation during water and gas injection, the influence of time, space and injection–production parameters should be considered. Aiming at this issue, a prediction method based on a controllable convolutional long short-term memory network (Ctrl-CLSTM) is proposed in this paper. The Ctrl-CLSTM is an unsupervised learning model whose input is the previous spatiotemporal sequence together with the controllable factors of corresponding moments, and the output is the sequence to be predicted. In this way, future oil saturation can be generated from the historical context. Concretely, the convolution operation is embedded into each unit to describe the interaction between temporal features and spatial structures of oil saturation, thus the Ctrl-CLSTM realizes the unified modeling of the spatiotemporal features of oil saturation. In addition, a novel control gate structure is introduced in each Ctrl-CLSTM unit to take the injection–production parameters as controllable influencing factors and establish the nonlinear relationship between oil saturation and injection–production parameters according to the coordinates of each well location. Therefore, different oil saturation prediction results can be obtained by changing the injection–production parameters. Finally, experiments on real oilfields show that the Ctrl-CLSTM comprehensively considers the influence of artificial controllable factors such as injection–production parameters, accomplishes accurate prediction of oil saturation with a structure similarity of more than 98% and is more time efficient than reservoir numerical simulation.
The optimization of injection–production parameters is an important step in the design of gas injection development schemes, but there are many influencing factors and they are difficult to determine. To solve this problem, this paper optimizes injection-production parameters by combining an improved particle swarm optimization algorithm to study the relationship between injection-production parameters and the net present value. In the process of injection-production parameter optimization, the particle swarm optimization algorithm has shortcomings, such as being prone to fall into local extreme points and slow in convergence speed. Curve adaptive and simulated annealing particle swarm optimization algorithms are proposed to further improve the optimization ability of the particle swarm optimization algorithm. Taking the Tarim oil field as an example, in different stages, the production time, injection volume and flowing bottom hole pressure were used as input variables, and the optimal net present value was taken as the goal. The injection-production parameters were optimized by improving the particle swarm optimization algorithm. Compared with the particle swarm algorithm, the net present value of the improved scheme was increased by about 3.3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.