With the development of communication technology has come several measurement applications requiring plane-wave conditions for wireless-device characterizations in anechoic chambers. In this paper, a metasurface lens with a 2 × 2 feeding-antenna array is proposed and characterized to synthesize a plane wave in a near field for a fifth-generation (5G) millimeter-wave radio-frequency (RF) devices test. The metasurface lens, based on Jerusalem-cross elements printed on a printed circuit board (PCB) substrate, is used for controlling the phase-shift distribution of incident spherical waves. The lens has a size of 0.4 × 0.4 m and is designed to operate at a range from 24.25 GHz to 27.5 GHz, and its feeding-antenna array is located at a focal plane of the lens, which is parallel to the metasurface lens. The lens is studied and verified through simulations and experiments, and a uniform amplitude and phase-field distribution at a reduced distance of 1.2 m generated by the metasurface lens throughout a QZ are achieved. The worst-case amplitude and phase variation of the designed metasurface lens are ±0.75 dB and ±7.5°, respectively. The results show a plane-wave condition can be achieved in 5G millimeter bands through the proposed compact and effective metasurface lens. Moreover, the proposed metasurface lens is shown to be capable of reducing the plane-wave synthesizing distance compared to the compact antenna test range (CATR) with a significantly reduced system cost, making it an attractive alternative to antenna testing in 5G millimeter-wave frequency bands.
In millimetre wave (mmWave) frequency band, radio resource management (RRM) performance is characterised in plane wave conditions using radiated over‐the‐air test method, which is a challenging combination of protocol and radio frequency performance measurement. This article presents a novel design of multiple lens‐based compact antenna test ranges (CATRs) to simulate multiple angles of arrival from different base‐stations in RRM measurement. Only four lens‐based CATRs are proposed to create plane wave conditions at the device under test with six different angles of arrival and capable of accurately constructing the wireless propagation condition and minimising the diffraction and scattering between adjacent CATRs. The lens‐based CATR is the key element in the RRM measurement system, which is composed of a metasurface lens for phase alignment and a 2 × 2 feed array antenna for the emission of electromagnetic signals. The function and capability of the proposed lens‐based CATR is validated through simulation and measurement, that the worst‐case amplitude variation in the quiet zone region is lower than ±0.8 dB at 26 GHz, and phase variation is lower than ±7.5° in the designed quiet zone, which could be used in the fifth‐generation mmWave RRM measurement.
Conformal antennas have been widely used in many fields due to their advantages of low air resistance and better visual appearance. In this paper, an arced conformal leaky-wave antenna (LWA) for a designable directional beam is proposed. The antenna is achieved based on a substrate-integrated waveguide (SIW). On the upper surface, a series of non-uniform transverse slots are etched. In order to guide the design of the antenna, as another key contribution of this work, a theoretical model for the traveling-wave structure is established. Using the model, the radiation property of the LWA is analyzed. In addition, by inputting the desired beam direction, the structural parameters of the LWA can be generated through the model. To verify the performance of the antenna and the model, an LWA prototype working at 28 GHz was fabricated and tested in a microwave anechoic chamber. The experimental results are in good agreement with the simulation results. The antenna achieved a gain of 9.96 dBi with cambered surface area of 1.89 λ02. The proposed method may be a promising candidate for conformal wireless communication applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.